möglich sobald bei der ZB eingereicht worden ist.
Improved prediction of bacterial CRISPRi guide efficiency from depletion screens through mixed-effect machine learning and data integration.
Genome Biol. 25:13 (2024)
CRISPR interference (CRISPRi) is the leading technique to silence gene expression in bacteria; however, design rules remain poorly defined. We develop a best-in-class prediction algorithm for guide silencing efficiency by systematically investigating factors influencing guide depletion in genome-wide essentiality screens, with the surprising discovery that gene-specific features substantially impact prediction. We develop a mixed-effect random forest regression model that provides better estimates of guide efficiency. We further apply methods from explainable AI to extract interpretable design rules from the model. This study provides a blueprint for predictive models for CRISPR technologies where only indirect measurements of guide activity are available.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Gene; Design; Sgrnas
ISSN (print) / ISBN
1474-760X
e-ISSN
1465-6906
Zeitschrift
Genome Biology
Quellenangaben
Band: 25,
Heft: 1,
Artikelnummer: 13
Verlag
BioMed Central
Verlagsort
Campus, 4 Crinan St, London N1 9xw, England
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Förderungen
Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst