möglich sobald bei der ZB eingereicht worden ist.
Weisfeiler and Leman go Machine Learning: The Story so far.
J. Mach. Learn. Res. 24:333 (2023)
In recent years, algorithms and neural architectures based on the Weisfeiler-Leman algorithm, a well-known heuristic for the graph isomorphism problem, have emerged as a powerful tool for machine learning with graphs and relational data. Here, we give a comprehensive overview of the algorithm's use in a machine-learning setting, focusing on the supervised regime. We discuss the theoretical background, show how to use it for supervised graph and node representation learning, discuss recent extensions, and outline the algorithm's connection to (permutation-)equivariant neural architectures. Moreover, we give an overview of current applications and future directions to stimulate further research.
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Schlagwörter
Machine learning for graphs; Graph neural networks; Weisfeiler-Leman algorithm; expressivity; equivariance; Sherali-adams Relaxations; Neural-network; Graph Isomorphism; Darc System; Kernels; Classification; Information; Generation; Logics
ISSN (print) / ISBN
1532-4435
e-ISSN
1533-7928
Zeitschrift
Journal of Machine Learning Research
Quellenangaben
Band: 24,
Artikelnummer: 333
Verlag
MIT Press
Verlagsort
31 Gibbs St, Brookline, Ma 02446 Usa
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of AI for Health (AIH)
Förderungen
Hightech Agenda Bavaria
Bavarian State Government
RWTH Junior Principal Investigator Fellowship under Germany's Excellence Strategy
Bavarian State Government
RWTH Junior Principal Investigator Fellowship under Germany's Excellence Strategy