möglich sobald bei der ZB eingereicht worden ist.
Leveraging Classic Deconvolution and Feature Extraction in Zero-Shot Image Restoration.
IEEE Xplore, 3876-3885 (2023)
Non-blind deconvolution aims to restore a sharp image from its blurred counterpart given an obtained kernel. Existing deep neural architectures are often built based on large datasets of sharp ground truth images and trained with supervision. Sharp, high quality ground truth images, however, are not always available, especially for biomedical applications. This severely hampers the applicability of current approaches in practice. In this paper, we propose a novel non-blind deconvolution method that leverages the power of deep learning and classic iterative deconvolution algorithms. Our approach combines a pre-trained network to extract deep features from the input image with iterative Richardson-Lucy deconvolution steps. Subsequently, a zero-shot optimisation process is employed to integrate the deconvolved features, resulting in a high-quality reconstructed image. By performing the preliminary reconstruction with the classic iterative deconvolution method, we can effectively utilise a smaller network to produce the final image, thus accelerating the reconstruction whilst reducing the demand for valuable computational resources. Our method demonstrates significant improvements in various real-world applications non-blind deconvolution tasks.
Impact Factor
Scopus SNIP
Altmetric
0.000
0.000
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Deconvolution ; Microscopy ; Self Supervised ; Zero Shot; Algorithm; Removal
Sprache
englisch
Veröffentlichungsjahr
2023
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
2375-9232
e-ISSN
2375-9259
Konferenztitel
Proceedings - 2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023
Zeitschrift
IEEE Xplore
Quellenangaben
Seiten: 3876-3885
Verlag
IEEE
Verlagsort
10662 Los Vaqueros Circle, Po Box 3014, Los Alamitos, Ca 90720-1264 Usa
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530006-001
Förderungen
Helmholtz Association under the joint research school "Munich School for Data Science -MUDS"
WOS ID
001156680303106
Scopus ID
85182927046
Erfassungsdatum
2024-01-29