PuSH - Publikationsserver des Helmholtz Zentrums München

Metz, M.C.* ; Ezhov, I.* ; Peeken, J.C. ; Buchner, J.A.* ; Lipkova, J.* ; Kofler, F. ; Waldmannstetter, D.* ; Delbridge, C.* ; Diehl, C.* ; Bernhardt, D. ; Schmidt-Graf, F.* ; Gempt, J.* ; Combs, S.E. ; Zimmer, C.* ; Menze, B.* ; Wiestler, B.*

Toward image-based personalization of glioblastoma therapy: A clinical and biological validation study of a novel, deep learning-driven tumor growth model.

Neurooncol. Adv. 6:vdad171 (2024)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
BACKGROUND: The diffuse growth pattern of glioblastoma is one of the main challenges for accurate treatment. Computational tumor growth modeling has emerged as a promising tool to guide personalized therapy. Here, we performed clinical and biological validation of a novel growth model, aiming to close the gap between the experimental state and clinical implementation. METHODS: One hundred and twenty-four patients from The Cancer Genome Archive (TCGA) and 397 patients from the UCSF Glioma Dataset were assessed for significant correlations between clinical data, genetic pathway activation maps (generated with PARADIGM; TCGA only), and infiltration (Dw) as well as proliferation (ρ) parameters stemming from a Fisher-Kolmogorov growth model. To further evaluate clinical potential, we performed the same growth modeling on preoperative magnetic resonance imaging data from 30 patients of our institution and compared model-derived tumor volume and recurrence coverage with standard radiotherapy plans. RESULTS: The parameter ratio Dw/ρ (P < .05 in TCGA) as well as the simulated tumor volume (P < .05 in TCGA/UCSF) were significantly inversely correlated with overall survival. Interestingly, we found a significant correlation between 11 proliferation pathways and the estimated proliferation parameter. Depending on the cutoff value for tumor cell density, we observed a significant improvement in recurrence coverage without significantly increased radiation volume utilizing model-derived target volumes instead of standard radiation plans. CONCLUSIONS: Identifying a significant correlation between computed growth parameters and clinical and biological data, we highlight the potential of tumor growth modeling for individualized therapy of glioblastoma. This might improve the accuracy of radiation planning in the near future.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Deep Learning ; Glioblastoma ; Personalized Therapy ; Tumor Growth Modeling; Glioma Growth; Invasion Margin; Brain; Predictors; Diagnosis; Survival; Atlas; Mri
ISSN (print) / ISBN 2632-2498
e-ISSN 2632-2498
Quellenangaben Band: 6, Heft: 1, Seiten: , Artikelnummer: vdad171 Supplement: ,
Verlag Oxford University Press
Verlagsort Great Clarendon St, Oxford Ox2 6dp, England
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed
Förderungen Helmut Horten Foundation
DCoMEX
EU Marie Sklodowska-Curie program, Translational Brain Imaging Training Network
German Excellence Initiative, Institute for Advanced Studies
TUM International Graduate School of Science and Engineering
D.F.G.
German Research Foundation