Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
ICoNIK: Generating Respiratory-Resolved Abdominal MR Reconstructions Using Neural Implicit Representations in k-Space.
In: Deep Generative Models. Berlin [u.a.]: Springer, 2024. 183-192 (Lect. Notes Comput. Sc. ; 14533 LNCS)
Motion-resolved reconstruction for abdominal magnetic resonance imaging (MRI) remains a challenge due to the trade-off between residual motion blurring caused by discretized motion states and undersampling artefacts. In this work, we generate blurring-free motion-resolved abdominal reconstructions by learning a neural implicit representation directly in k-space (NIK). Using measured sampling points and a data-derived respiratory navigator signal, we train a network to generate continuous signal values. To aid the regularization of sparsely sampled regions, we introduce an additional informed correction layer (ICo), which leverages information from neighboring regions to correct NIK’s prediction. The proposed generative reconstruction methods, NIK and ICoNIK, outperform standard motion-resolved reconstruction techniques and provide a promising solution to address motion artefacts in abdominal MRI.
Altmetric
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Sammelbandbeitrag/Buchkapitel
Schlagwörter
Motion-resolved Abdominal Mri ; Mri Reconstruction ; Neural Implicit Representations ; Parallel Imaging
Sprache
englisch
Veröffentlichungsjahr
2024
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
Bandtitel
Deep Generative Models
Zeitschrift
Lecture Notes in Computer Science
Quellenangaben
Band: 14533 LNCS,
Seiten: 183-192
Verlag
Springer
Verlagsort
Berlin [u.a.]
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
Förderungen
Helmholtz Association under the joint research school "Munich School for Data Science - MUDS"
WOS ID
001207831600018
Scopus ID
85187660449
Erfassungsdatum
2024-04-25