PuSH - Publikationsserver des Helmholtz Zentrums München

Spieker, V. ; Huang, W.* ; Eichhorn, H. ; Stelter, J.* ; Weiss, K.* ; Zimmer, V.A. ; Braren, R.F.* ; Karampinos, D.C.* ; Hammernik, K.* ; Schnabel, J.A.

ICoNIK: Generating Respiratory-Resolved Abdominal MR Reconstructions Using Neural Implicit Representations in k-Space.

In: Deep Generative Models. Berlin [u.a.]: Springer, 2024. 183-192 (Lect. Notes Comput. Sc. ; 14533 LNCS)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Motion-resolved reconstruction for abdominal magnetic resonance imaging (MRI) remains a challenge due to the trade-off between residual motion blurring caused by discretized motion states and undersampling artefacts. In this work, we generate blurring-free motion-resolved abdominal reconstructions by learning a neural implicit representation directly in k-space (NIK). Using measured sampling points and a data-derived respiratory navigator signal, we train a network to generate continuous signal values. To aid the regularization of sparsely sampled regions, we introduce an additional informed correction layer (ICo), which leverages information from neighboring regions to correct NIK’s prediction. The proposed generative reconstruction methods, NIK and ICoNIK, outperform standard motion-resolved reconstruction techniques and provide a promising solution to address motion artefacts in abdominal MRI.
Altmetric
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Sammelbandbeitrag/Buchkapitel
Schlagwörter Motion-resolved Abdominal Mri ; Mri Reconstruction ; Neural Implicit Representations ; Parallel Imaging
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Bandtitel Deep Generative Models
Quellenangaben Band: 14533 LNCS, Heft: , Seiten: 183-192 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin [u.a.]
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-507100-001
Förderungen Helmholtz Association under the joint research school "Munich School for Data Science - MUDS"
Scopus ID 85187660449
Erfassungsdatum 2024-04-25