Karollus, A.* ; Hingerl, J.* ; Gankin, D.* ; Grosshauser, M.* ; Klemon, K.* ; Gagneur, J.
Species-aware DNA language models capture regulatory elements and their evolution.
Genome Biol. 25:83 (2024)
BACKGROUND: The rise of large-scale multi-species genome sequencing projects promises to shed new light on how genomes encode gene regulatory instructions. To this end, new algorithms are needed that can leverage conservation to capture regulatory elements while accounting for their evolution. RESULTS: Here, we introduce species-aware DNA language models, which we trained on more than 800 species spanning over 500 million years of evolution. Investigating their ability to predict masked nucleotides from context, we show that DNA language models distinguish transcription factor and RNA-binding protein motifs from background non-coding sequence. Owing to their flexibility, DNA language models capture conserved regulatory elements over much further evolutionary distances than sequence alignment would allow. Remarkably, DNA language models reconstruct motif instances bound in vivo better than unbound ones and account for the evolution of motif sequences and their positional constraints, showing that these models capture functional high-order sequence and evolutionary context. We further show that species-aware training yields improved sequence representations for endogenous and MPRA-based gene expression prediction, as well as motif discovery. CONCLUSIONS: Collectively, these results demonstrate that species-aware DNA language models are a powerful, flexible, and scalable tool to integrate information from large compendia of highly diverged genomes.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Binding; Identification; Divergence; Vertebrate; Sequences; Regions; Protein; Genes; Sites; Rap1
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
1474-760X
e-ISSN
1465-6906
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 25,
Heft: 1,
Seiten: ,
Artikelnummer: 83
Supplement: ,
Reihe
Verlag
Bmc
Verlagsort
Campus, 4 Crinan St, London N1 9xw, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
Förderungen
Bundesministerium fr Bildung und Forschung
Copyright
Erfassungsdatum
2024-05-15