PuSH - Publikationsserver des Helmholtz Zentrums München

Unterauer, E.M.* ; Shetab Boushehri, S. ; Jevdokimenko, K.* ; Masullo, L.A.* ; Ganji, M.* ; Sograte-Idrissi, S.* ; Kowalewski, R.* ; Strauss, S.* ; Reinhardt, S.C.M.* ; Perovic, A.* ; Marr, C. ; Opazo, F.* ; Fornasiero, E.F.* ; Jungmann, R.*

Spatial proteomics in neurons at single-protein resolution.

Cell 187, 1785-1800.e16 (2024)
Verlagsversion DOI PMC
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
To understand biological processes, it is necessary to reveal the molecular heterogeneity of cells by gaining access to the location and interaction of all biomolecules. Significant advances were achieved by super-resolution microscopy, but such methods are still far from reaching the multiplexing capacity of proteomics. Here, we introduce secondary label-based unlimited multiplexed DNA-PAINT (SUM-PAINT), a high-throughput imaging method that is capable of achieving virtually unlimited multiplexing at better than 15 nm resolution. Using SUM-PAINT, we generated 30-plex single-molecule resolved datasets in neurons and adapted omics-inspired analysis for data exploration. This allowed us to reveal the complexity of synaptic heterogeneity, leading to the discovery of a distinct synapse type. We not only provide a resource for researchers, but also an integrated acquisition and analysis workflow for comprehensive spatial proteomics at single-protein resolution.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Dna-paint ; Excitatory Synapses ; Inhibitory Synapses ; Multiplexing ; Neuron Atlas ; Neuron Imaging ; Proteomics ; Spatial-omics ; Super-resolution Microscopy ; Synapse ; Synapse Diversity ; Synaptic Proteins; Superresolution Microscopy; Dna-paint; Release; Binding
ISSN (print) / ISBN 0092-8674
e-ISSN 1097-4172
Zeitschrift Cell
Quellenangaben Band: 187, Heft: 7, Seiten: 1785-1800.e16 Artikelnummer: , Supplement: ,
Verlag Cell Press
Verlagsort Cambridge, Mass.
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed
Institut(e) Institute of AI for Health (AIH)
Förderungen ERC
BMBF
Max Planck Foundation
Max Planck Society
QBM graduate school
IMPRS-ML graduate school
European Union
Deutsche Forschungsgemeinschaft (DFG)
Schram Stiftung
Hightech Agenda Bayern
Collaborative Research Center 1286 on Quantitative Synaptologie Gottingen, Germany
F. Hoffmann-La Roche
Helmholtz Association
European Research Council