möglich sobald bei der ZB eingereicht worden ist.
Robust Detection Outcome: A Metric for Pathology Detection in Medical Images.
In: (6th International Conference on Medical Imaging with Deep Learning, MIDL 2023, 10-12 July 2023, Nashville). 2023. 568-585 (Proceedings of Machine Learning Research ; 227)
Detection of pathologies is a fundamental task in medical imaging and the evaluation of algorithms that can perform this task automatically is crucial. However, current object detection metrics for natural images do not reflect the specific clinical requirements in pathology detection sufficiently. To tackle this problem, we propose Robust Detection Outcome (RoDeO); a novel metric for evaluating algorithms for pathology detection in medical images, especially in chest X-rays. RoDeO evaluates different errors directly and individually, and reflects clinical needs better than current metrics. Extensive evaluation on the ChestX-ray8 dataset shows the superiority of our metrics compared to existing ones. We released the code at https://github.com/FeliMe/RoDeO and published RoDeO as pip package (rodeometric).
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Metric ; Object Detection ; Pathology Detection
Sprache
englisch
Veröffentlichungsjahr
2023
HGF-Berichtsjahr
2024
Konferenztitel
6th International Conference on Medical Imaging with Deep Learning, MIDL 2023
Konferzenzdatum
10-12 July 2023
Konferenzort
Nashville
Quellenangaben
Band: 227,
Seiten: 568-585
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
Scopus ID
85189329951
WOS ID
001221108600033
Erfassungsdatum
2024-05-22