Machado, I.* ; Puyol-Antón, E.* ; Hammernik, K.* ; Cruz, G.* ; Ugurlu, D.* ; Olakorede, I.* ; Öksüz, I.* ; Ruijsink, B.* ; Castelo-Branco, M.* ; Young, A.* ; Prieto, C.* ; Schnabel, J.A. ; King, A.*
A deep learning-based integrated framework for quality-aware undersampled cine cardiac MRI reconstruction and analysis.
IEEE Trans. Bio. Med. Eng. 71, 855-865 (2024)
Cine cardiac magnetic resonance (CMR) imaging is considered the gold standard for cardiac function evaluation. However, cine CMR acquisition is inherently slow and in recent decades considerable effort has been put into accelerating scan times without compromising image quality or the accuracy of derived results. In this article, we present a fully-automated, quality-controlled integrated framework for reconstruction, segmentation and downstream analysis of undersampled cine CMR data. The framework produces high quality reconstructions and segmentations, leading to undersampling factors that are optimised on a scan-by-scan basis. This results in reduced scan times and automated analysis, enabling robust and accurate estimation of functional biomarkers. To demonstrate the feasibility of the proposed approach, we perform simulations of radial k-space acquisitions using in-vivo cine CMR data from 270 subjects from the UK Biobank (with synthetic phase) and in-vivo cine CMR data from 16 healthy subjects (with real phase). The results demonstrate that the optimal undersampling factor varies for different subjects by approximately 1 to 2 seconds per slice. We show that our method can produce quality-controlled images in a mean scan time reduced from 12 to 4 seconds per slice, and that image quality is sufficient to allow clinically relevant parameters to be automatically estimated to lie within 5% mean absolute difference.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Cardiac MRI; deep learning; fast reconstruction; quality assessment; segmentation; UK BioBank; Motion Artifacts; Segmentation
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
0018-9294
e-ISSN
0096-0616
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 71,
Heft: 3,
Seiten: 855-865
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Institute of Electrical and Electronics Engineers (IEEE)
Verlagsort
New York, NY
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
Förderungen
Engineering and Physical Sciences Research Council
Copyright
Erfassungsdatum
2024-05-15