PuSH - Publikationsserver des Helmholtz Zentrums München

Feuerriegel, S.* ; Frauen, D.* ; Melnychuk, V.* ; Schweisthal, J.* ; Hess, K.* ; Curth, A.* ; Bauer, S. ; Kilbertus, N. ; Kohane, I.S.* ; van der Schaar, M.*

Causal machine learning for predicting treatment outcomes.

Nat. Med. 30, 958-968 (2024)
Postprint DOI PMC
Open Access Green
Causal machine learning (ML) offers flexible, data-driven methods for predicting treatment outcomes including efficacy and toxicity, thereby supporting the assessment and safety of drugs. A key benefit of causal ML is that it allows for estimating individualized treatment effects, so that clinical decision-making can be personalized to individual patient profiles. Causal ML can be used in combination with both clinical trial data and real-world data, such as clinical registries and electronic health records, but caution is needed to avoid biased or incorrect predictions. In this Perspective, we discuss the benefits of causal ML (relative to traditional statistical or ML approaches) and outline the key components and steps. Finally, we provide recommendations for the reliable use of causal ML and effective translation into the clinic.
Impact Factor
Scopus SNIP
Altmetric
58.700
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 1078-8956
e-ISSN 1546-170X
Zeitschrift Nature medicine
Quellenangaben Band: 30, Heft: 4, Seiten: 958-968 Artikelnummer: , Supplement: ,
Verlag Nature Publishing Group
Verlagsort New York, NY
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-530003-001
Scopus ID 85191069141
PubMed ID 38641741
Erfassungsdatum 2024-06-05