Popular metrics for clustering comparison, like the Adjusted Rand Index and the Adjusted Mutual Information, are type II biased. The Standardized Mutual Information removes this bias but suffers from counterintuitive non-monotonicity and poor computational efficiency. We introduce the p-value adjusted Rand Index (PMI2), the first cluster comparison method that is type II unbiased and provably monotonous. The PMI2 has fast approximations that outperform the Standardized Mutual information. We demonstrate its unbiased clustering selection, approximation quality, and runtime efficiency on synthetic benchmarks. In experiments on image and social network datasets, we show how the PMI2 can help practitioners choose better clustering and community detection algorithms.
Impact Factor
Scopus SNIP
Web of Science Times Cited
Scopus Cited By
Altmetric
0
0
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
PublikationstypArtikel: Konferenzbeitrag
Dokumenttyp
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Keywords plus
Spracheenglisch
Veröffentlichungsjahr2023
Prepublished im Jahr 0
HGF-Berichtsjahr2024
ISSN (print) / ISBN1049-5258
e-ISSN
ISBN
Bandtitel
KonferenztitelAdvances in Neural Information Processing Systems