PuSH - Publikationsserver des Helmholtz Zentrums München

Klede, K.* ; Altstidl, T.* ; Zanca, D.* ; Eskofier, B.M.

p-value adjustment for monotonous, unbiased, and fast clustering comparison.

In: (Advances in Neural Information Processing Systems). 2023. (Advances in Neural Information Processing Systems ; 36)
Verlagsversion
Open Access Hybrid
Popular metrics for clustering comparison, like the Adjusted Rand Index and the Adjusted Mutual Information, are type II biased. The Standardized Mutual Information removes this bias but suffers from counterintuitive non-monotonicity and poor computational efficiency. We introduce the p-value adjusted Rand Index (PMI2), the first cluster comparison method that is type II unbiased and provably monotonous. The PMI2 has fast approximations that outperform the Standardized Mutual information. We demonstrate its unbiased clustering selection, approximation quality, and runtime efficiency on synthetic benchmarks. In experiments on image and social network datasets, we show how the PMI2 can help practitioners choose better clustering and community detection algorithms.
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 1049-5258
Konferenztitel Advances in Neural Information Processing Systems
Quellenangaben Band: 36 Heft: , Seiten: , Artikelnummer: , Supplement: ,
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540008-001
Scopus ID 85191149521
Erfassungsdatum 2024-05-23