PuSH - Publikationsserver des Helmholtz Zentrums München

LaBella, D.* ; Khanna, O.* ; McBurney-Lin, S.* ; McLean, R.M.* ; Nedelec, P.* ; Rashid, A.S.* ; Tahon, N.H.* ; Altes, T.* ; Baid, U.* ; Bhalerao, R.P.* ; Dhemesh, Y.* ; Floyd, S.* ; Godfrey, D.I.* ; Hilal, F.* ; Janas, A.* ; Kazerooni, A.* ; Kent, C.* ; Kirkpatrick, J.* ; Kofler, F. ; Leu, K.* ; Maleki, N.* ; Menze, B.* ; Pajot, M.* ; Reitman, Z.J.* ; Rudie, J.D.* ; Saluja, R.* ; Velichko, Y.* ; Wang, C.* ; Warman, P.I.* ; Sollmann, N.* ; Diffley, D.* ; Nandolia, K.K.* ; Warren, D.I.* ; Hussain, A.* ; Fehringer, J.P.* ; Bronstein, Y.* ; Deptula, L.* ; Stein, E.G.* ; Taherzadeh, M.* ; Portela de Oliveira, E.* ; Haughey, A.* ; Kontzialis, M.* ; Saba, L.* ; Turner, B.M.* ; Brüßeler, M.M.T.* ; Ansari, S.* ; Gkampenis, A.* ; Weiss, D.M.* ; Mansour, A.* ; Shawali, I.H.* ; Yordanov, N.* ; Stein, J.M.* ; Hourani, R.* ; Moshebah, M.Y.* ; Abouelatta, A.M.* ; Rizvi, T.* ; Willms, K.* ; Martin, D.C.* ; Okar, A.* ; D'Anna, G.* ; Taha, A.* ; Sharifi, Y.* ; Faghani, S.* ; Kite, D.* ; Pinho, M.* ; Haider, M.A.* ; Alonso-Basanta, M.* ; Villanueva-Meyer, J.* ; Rauschecker, A.M.* ; Nada, A.* ; Aboian, M.* ; Flanders, A.* ; Bakas, S.* ; Calabrese, E.*

A multi-institutional meningioma MRI dataset for automated multi-sequence image segmentation.

Sci. Data 11:496 (2024)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Meningiomas are the most common primary intracranial tumors and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on brain MRI for diagnosis, treatment planning, and longitudinal treatment monitoring. However, automated, objective, and quantitative tools for non-invasive assessment of meningiomas on multi-sequence MR images are not available. Here we present the BraTS Pre-operative Meningioma Dataset, as the largest multi-institutional expert annotated multilabel meningioma multi-sequence MR image dataset to date. This dataset includes 1,141 multi-sequence MR images from six sites, each with four structural MRI sequences (T2-, T2/FLAIR-, pre-contrast T1-, and post-contrast T1-weighted) accompanied by expert manually refined segmentations of three distinct meningioma sub-compartments: enhancing tumor, non-enhancing tumor, and surrounding non-enhancing T2/FLAIR hyperintensity. Basic demographic data are provided including age at time of initial imaging, sex, and CNS WHO grade. The goal of releasing this dataset is to facilitate the development of automated computational methods for meningioma segmentation and expedite their incorporation into clinical practice, ultimately targeting improvement in the care of meningioma patients.
Impact Factor
Scopus SNIP
Altmetric
5.800
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2052-4463
e-ISSN 2052-4463
Zeitschrift Scientific Data
Quellenangaben Band: 11, Heft: 1, Seiten: , Artikelnummer: 496 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-530001-001
Förderungen National Institutes of Health (NIH)
American Society of Neuroradiology (ASNR)
Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
Scopus ID 85193323305
PubMed ID 38750041
Erfassungsdatum 2024-05-17