PuSH - Publikationsserver des Helmholtz Zentrums München

Yu, S. ; Han, S. ; Shi, M. ; Harada, M. ; Ge, J. ; Li, X.* ; Cai, X.* ; Heier, M. ; Kastenmüller, G. ; Suhre, K.* ; Gieger, C. ; Koenig, W.* ; Rathmann, W.* ; Peters, A. ; Wang-Sattler, R.

Prediction of myocardial infarction using a combined generative adversarial network model and feature-enhanced loss function.

Metabolites 14:258 (2024)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Accurate risk prediction for myocardial infarction (MI) is crucial for preventive strategies, given its significant impact on global mortality and morbidity. Here, we propose a novel deep-learning approach to enhance the prediction of incident MI cases by incorporating metabolomics alongside clinical risk factors. We utilized data from the KORA cohort, including the baseline S4 and follow-up F4 studies, consisting of 1454 participants without prior history of MI. The dataset comprised 19 clinical variables and 363 metabolites. Due to the imbalanced nature of the dataset (78 observed MI cases and 1376 non-MI individuals), we employed a generative adversarial network (GAN) model to generate new incident cases, augmenting the dataset and improving feature representation. To predict MI, we further utilized multi-layer perceptron (MLP) models in conjunction with the synthetic minority oversampling technique (SMOTE) and edited nearest neighbor (ENN) methods to address overfitting and underfitting issues, particularly when dealing with imbalanced datasets. To enhance prediction accuracy, we propose a novel GAN for feature-enhanced (GFE) loss function. The GFE loss function resulted in an approximate 2% improvement in prediction accuracy, yielding a final accuracy of 70%. Furthermore, we evaluated the contribution of each clinical variable and metabolite to the predictive model and identified the 10 most significant variables, including glucose tolerance, sex, and physical activity. This is the first study to construct a deep-learning approach for producing 7-year MI predictions using the newly proposed loss function. Our findings demonstrate the promising potential of our technique in identifying novel biomarkers for MI prediction.
Impact Factor
Scopus SNIP
Altmetric
3.500
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Gan For Feature-enhanced ; Gfe Loss Function ; Feature Enhancement ; Generative Adversarial Networks ; Limited And Imbalanced Incident Cases ; Myocardial Infarction ; Prediction; Population; Disease; Risk; Outcomes; Profile; Kora
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2218-1989
e-ISSN 2218-1989
Zeitschrift Metabolites
Quellenangaben Band: 14, Heft: 5, Seiten: , Artikelnummer: 258 Supplement: ,
Verlag MDPI
Verlagsort St Alban-anlage 66, Ch-4052 Basel, Switzerland
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Translational Genomics (ITG)
Institute of Epidemiology (EPI)
Institute of Computational Biology (ICB)
POF Topic(s) 30205 - Bioengineering and Digital Health
30202 - Environmental Health
Forschungsfeld(er) Genetics and Epidemiology
Enabling and Novel Technologies
PSP-Element(e) G-506700-001
G-504000-006
G-503891-001
G-504091-004
G-504000-010
G-504090-001
Förderungen Innovative Medicines Initiative 2 Joint Undertaking (JU)
Scopus ID 85194242849
PubMed ID 38786735
Erfassungsdatum 2024-07-08