PuSH - Publikationsserver des Helmholtz Zentrums München

Sauerborn, E. ; Corredor, N.C.* ; Reska, T.T.M. ; Perlas Puente,A. ; Vargas da Fonseca Atum, S. ; Goldman, N.* ; Wantia, N.* ; Prazeres da Costa, C.U.* ; Foster-Nyarko, E.* ; Urban, L.

Detection of hidden antibiotic resistance through real-time genomics.

Nat. Commun. 15:5494 (2024)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Real-time genomics through nanopore sequencing holds the promise of fast antibiotic resistance prediction directly in the clinical setting. However, concerns about the accuracy of genomics-based resistance predictions persist, particularly when compared to traditional, clinically established diagnostic methods. Here, we leverage the case of a multi-drug resistant Klebsiella pneumoniae infection to demonstrate how real-time genomics can enhance the accuracy of antibiotic resistance profiling in complex infection scenarios. Our results show that unlike established diagnostics, nanopore sequencing data analysis can accurately detect low-abundance plasmid-mediated resistance, which often remains undetected by conventional methods. This capability has direct implications for clinical practice, where such "hidden" resistance profiles can critically influence treatment decisions. Consequently, the rapid, in situ application of real-time genomics holds significant promise for improving clinical decision-making and patient outcomes.
Impact Factor
Scopus SNIP
Altmetric
14.700
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Zeitschrift Nature Communications
Quellenangaben Band: 15, Heft: 1, Seiten: , Artikelnummer: 5494 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Helmholtz Pioneer Campus (HPC)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
Pioneer Campus
PSP-Element(e) G-530013-001
G-510011-001
Förderungen Projekt DEAL
Bavarian Ministry of Commerce
C.P.dC.'s DZIF grant
Helmholtz Principal Investigator Grant
Scopus ID 85197121231
PubMed ID 38944650
Erfassungsdatum 2024-07-08