Schlieper, P.* ; Luft, H.* ; Klede, K.* ; Strohmeyer, C.* ; Eskofier, B.M. ; Zanca, D.*
     
 
    
        
Enhancing unsupervised outlier model selection: A study on ireos algorithms.
    
    
        
    
    
        
        ACM Trans. Knowl. Discov. Data 18:25 (2024)
    
    
    
		
		
			
				Outlier detection stands as a critical cornerstone in the field of data mining, with a wide range of applications spanning from fraud detection to network security. However, real-world scenarios often lack labeled data for training, necessitating unsupervised outlier detection methods. This study centers on Unsupervised Outlier Model Selection (UOMS), with a specific focus on the family of Internal, Relative Evaluation of Outlier Solutions (IREOS) algorithms. IREOS measures outlier candidate separability by evaluating multiple maximum-margin classifiers and, while effective, it is constrained by its high computational demands. We investigate the impact of several different separation methods in UOMS in terms of ranking quality and runtime. Surprisingly, our findings indicate that different separability measures have minimal impact on IREOS' effectiveness. However, using linear separation methods within IREOS significantly reduces its computation time. These insights hold significance for real-world applications where efficient outlier detection is critical. In the context of this work, we provide the code for the IREOS algorithm and our separability techniques.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Anomaly Detection ; Model Selection ; Outlier Detection ; Unsupervised Evaluation
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2024
    
 
    
        Prepublished im Jahr 
        0
    
 
    
        HGF-Berichtsjahr
        2024
    
 
    
    
        ISSN (print) / ISBN
        1556-4681
    
 
    
        e-ISSN
        1556-472X
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 18,  
	    Heft: 7,  
	    Seiten: ,  
	    Artikelnummer: 25 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Association for Computing Machinery
        
 
        
            Verlagsort
            1601 Broadway, 10th Floor, New York, Ny Usa
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute of AI for Health (AIH)
    
 
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-540008-001
    
 
    
        Förderungen
        Schaeffler Hub for Advanced Research at the Friedrich-Alexander-Universitat Erlangen-Nurnberg
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2024-07-08