PuSH - Publikationsserver des Helmholtz Zentrums München

Schlieper, P.* ; Luft, H.* ; Klede, K.* ; Strohmeyer, C.* ; Eskofier, B.M. ; Zanca, D.*

Enhancing unsupervised outlier model selection: A study on ireos algorithms.

ACM Trans. Knowl. Discov. Data 18:25 (2024)
Verlagsversion DOI
Closed
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Outlier detection stands as a critical cornerstone in the field of data mining, with a wide range of applications spanning from fraud detection to network security. However, real-world scenarios often lack labeled data for training, necessitating unsupervised outlier detection methods. This study centers on Unsupervised Outlier Model Selection (UOMS), with a specific focus on the family of Internal, Relative Evaluation of Outlier Solutions (IREOS) algorithms. IREOS measures outlier candidate separability by evaluating multiple maximum-margin classifiers and, while effective, it is constrained by its high computational demands. We investigate the impact of several different separation methods in UOMS in terms of ranking quality and runtime. Surprisingly, our findings indicate that different separability measures have minimal impact on IREOS' effectiveness. However, using linear separation methods within IREOS significantly reduces its computation time. These insights hold significance for real-world applications where efficient outlier detection is critical. In the context of this work, we provide the code for the IREOS algorithm and our separability techniques.
Impact Factor
Scopus SNIP
Altmetric
4.000
1.733
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Anomaly Detection ; Model Selection ; Outlier Detection ; Unsupervised Evaluation
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 1556-4681
e-ISSN 1556-472X
Quellenangaben Band: 18, Heft: 7, Seiten: , Artikelnummer: 25 Supplement: ,
Verlag Association for Computing Machinery
Verlagsort 1601 Broadway, 10th Floor, New York, Ny Usa
Begutachtungsstatus Peer reviewed
Institut(e) Institute of AI for Health (AIH)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540008-001
Förderungen Schaeffler Hub for Advanced Research at the Friedrich-Alexander-Universitat Erlangen-Nurnberg
Scopus ID 85196842042
Erfassungsdatum 2024-07-08