möglich sobald bei der ZB eingereicht worden ist.
Mixed models with multiple instance learning.
In: Proceedings of Machine Learning Research (27th International Conference on Artificial Intelligence and Statistics (AISTATS), MAY 02-04, 2024, Valencia, SPAIN). ML Research Press, 2024. 3664-3672 (Int. Conf. art. intell. stat. ; 238)
Predicting patient features from single-cell data can help identify cellular states implicated in health and disease. Linear models and average cell type expressions are typically favored for this task for their efficiency and robustness, but they overlook the rich cell heterogeneity inherent in single-cell data. To address this gap, we introduce MixMIL, a framework integrating Generalized Linear Mixed Models (GLMM) and Multiple Instance Learning (MIL), upholding the advantages of linear models while modeling cell state heterogeneity. By leveraging predefined cell embeddings, MixMIL enhances computational efficiency and aligns with recent advancements in single-cell representation learning. Our empirical results reveal that MixMIL outperforms existing MIL models in single-cell datasets, uncovering new associations and elucidating biological mechanisms across different domains.
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Sprache
englisch
Veröffentlichungsjahr
2024
HGF-Berichtsjahr
2024
Konferenztitel
27th International Conference on Artificial Intelligence and Statistics (AISTATS)
Konferzenzdatum
MAY 02-04, 2024
Konferenzort
Valencia, SPAIN
Konferenzband
Proceedings of Machine Learning Research
Quellenangaben
Band: 238,
Seiten: 3664-3672
Reihe
Proceedings of Machine Learning Research
Verlag
ML Research Press
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of AI for Health (AIH)
Institute of Computational Biology (ICB)
Institute of Computational Biology (ICB)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540004-001
G-503800-001
G-503800-001
WOS ID
001286500303021
Scopus ID
85194198233
Erfassungsdatum
2024-07-08