PuSH - Publikationsserver des Helmholtz Zentrums München

Sorek, G.* ; Haim, Y.* ; Chalifa-Caspi, V.* ; Lazarescu, O.* ; Ziv-Agam, M.* ; Hagemann, T. ; Nono Nankam, P.A. ; Blüher, M. ; Liberty, I.F.* ; Dukhno, O.* ; Kukeev, I.* ; Yeger-Lotem, E.* ; Rudich, A.* ; Levin, L.*

sNucConv: A bulk RNA-seq deconvolution method trained on single-nucleus RNA-seq data to estimate cell-type composition of human adipose tissues.

iScience 27:110368 (2024)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Deconvolution algorithms mostly rely on single-cell RNA-sequencing (scRNA-seq) data applied onto bulk RNA-sequencing (bulk RNA-seq) to estimate tissues’ cell-type composition, with performance accuracy validated on deposited databases. Adipose tissues’ cellular composition is highly variable, and adipocytes can only be captured by single-nucleus RNA-sequencing (snRNA-seq). Here we report the development of sNucConv, a Scaden deep-learning-based deconvolution tool, trained using 5 hSAT and 7 hVAT snRNA-seq-based data corrected by (i) snRNA-seq/bulk RNA-seq highly correlated genes and (ii) individual cell-type regression models. Applying sNucConv on our bulk RNA-seq data resulted in cell-type proportion estimation of 15 and 13 cell types, with accuracy of R = 0.93 (range: 0.76–0.97) and R = 0.95 (range: 0.92–0.98) for hVAT and hSAT, respectively. This performance level was further validated on an independent set of samples (5 hSAT; 5 hVAT). The resulting model was depot specific, reflecting depot differences in gene expression patterns. Jointly, sNucConv provides proof-of-concept for producing validated deconvolution models for tissues un-amenable to scRNA-seq.
Impact Factor
Scopus SNIP
Altmetric
4.600
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Biocomputational Method ; Classification Of Bioinformatical Subject ; Integrative Aspects Of Cell Biology ; Machine Learning ; Transcriptomics; Obesity; Inflammation; Genes
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2589-0042
e-ISSN 2589-0042
Zeitschrift iScience
Quellenangaben Band: 27, Heft: 7, Seiten: , Artikelnummer: 110368 Supplement: ,
Verlag Elsevier
Verlagsort Amsterdam ; Bosten ; London ; New York ; Oxford ; Paris ; Philadelphia ; San Diego ; St. Louis
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz Institute for Metabolism, Obesity and Vascular Research (HI-MAG)
POF Topic(s) 30201 - Metabolic Health
Forschungsfeld(er) Helmholtz Diabetes Center
PSP-Element(e) G-506501-001
Förderungen Israel Science Foundation
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
Chan Zuckerberg Initiative Foundation
Scopus ID 85197515001
PubMed ID 39071890
Erfassungsdatum 2024-07-17