Free by publisher: Verlagsversion online verfügbar 07/2026
möglich sobald bei der ZB eingereicht worden ist.
Forecasting daily total pollen concentrations on a global scale.
Allergy 79, 2173-2185 (2024)
DOI
PMC
BACKGROUND: There is evidence that global anthropogenic climate change may be impacting floral phenology and the temporal and spatial characteristics of aero-allergenic pollen. Given the extent of current and future climate uncertainty, there is a need to strengthen predictive pollen forecasts. METHODS: The study aims to use CatBoost (CB) and deep learning (DL) models for predicting the daily total pollen concentration up to 14 days in advance for 23 cities, covering all five continents. The model includes the projected environmental parameters, recent concentrations (1, 2 and 4 weeks), and the past environmental explanatory variables, and their future values. RESULTS: The best pollen forecasts include Mexico City (R2(DL_7) ≈ .7), and Santiago (R2(DL_7) ≈ .8) for the 7th forecast day, respectively; while the weakest pollen forecasts are made for Brisbane (R2(DL_7) ≈ .4) and Seoul (R2(DL_7) ≈ .1) for the 7th forecast day. The global order of the five most important environmental variables in determining the daily total pollen concentrations is, in decreasing order: the past daily total pollen concentration, future 2 m temperature, past 2 m temperature, past soil temperature in 28-100 cm depth, and past soil temperature in 0-7 cm depth. City-related clusters of the most similar distribution of feature importance values of the environmental variables only slightly change on consecutive forecast days for Caxias do Sul, Cape Town, Brisbane, and Mexico City, while they often change for Sydney, Santiago, and Busan. CONCLUSIONS: This new knowledge of the ecological relationships of the most remarkable variables importance for pollen forecast models according to clusters, cities and forecast days is important for developing and improving the accuracy of airborne pollen forecasts.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Allergy ; Artificial Intelligence ; Environmental Variables ; Feature Importance Cluster ; Pollen Forecast; Airborne Pollen; Admissions; Australia; Counts; Asthma
ISSN (print) / ISBN
0105-4538
e-ISSN
1398-9995
Zeitschrift
Allergy
Quellenangaben
Band: 79,
Heft: 8,
Seiten: 2173-2185
Verlag
Wiley
Verlagsort
111 River St, Hoboken 07030-5774, Nj Usa
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Environmental Medicine (IEM)
Förderungen
EU- COST Action ADOPT