PuSH - Publikationsserver des Helmholtz Zentrums München

Makra, L.* ; Coviello, L.* ; Gobbi, A.* ; Jurman, G.* ; Furlanello, C.* ; Brunato, M.* ; Ziska, L.H.* ; Hess, J.J.* ; Damialis, A.* ; Garcia, M.P.P.* ; Tusnady, G.* ; Czibolya, L.* ; Ihász, I.* ; Deák, A.* ; Mikó, E.* ; Dorner, Z.* ; Harry, S.K.* ; Bruffaerts, N.* ; Packeu, A.* ; Saarto, A.* ; Toiviainen, L.* ; Louna-Korteniemi, M.* ; Pätsi, S.* ; Thibaudon, M.* ; Oliver, G.* ; Charalampopoulos, A.* ; Vokou, D.* ; Przedpelska-Wasowicz, E.M.* ; Guðjohnsen, E.R.* ; Bonini, M.* ; Celenk, S.* ; Ozaslan, C.* ; Oh, J.W.* ; Sullivan, K.E.* ; Ford, L.* ; Kelly, M.* ; Levetin, E.* ; Myszkowska, D.* ; Severova, E.* ; Gehrig, R.* ; Calderón-Ezquerro, M.D.C.* ; Guerra, C.G.* ; Leiva-Guzmán, M.A.* ; Ramón, G.D.* ; Barrionuevo, L.B.* ; Peter, J.* ; Berman, D.M.* ; Katelaris, C.H.* ; Davies, J.M.* ; Burton, P.* ; Beggs, P.J.* ; Vergamini, S.M.* ; Valencia-Barrera, R.M.* ; Traidl-Hoffmann, C.

Forecasting daily total pollen concentrations on a global scale.

Allergy 79, 2173-2185 (2024)
Verlagsversion DOI PMC
Closed
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
BACKGROUND: There is evidence that global anthropogenic climate change may be impacting floral phenology and the temporal and spatial characteristics of aero-allergenic pollen. Given the extent of current and future climate uncertainty, there is a need to strengthen predictive pollen forecasts. METHODS: The study aims to use CatBoost (CB) and deep learning (DL) models for predicting the daily total pollen concentration up to 14 days in advance for 23 cities, covering all five continents. The model includes the projected environmental parameters, recent concentrations (1, 2 and 4 weeks), and the past environmental explanatory variables, and their future values. RESULTS: The best pollen forecasts include Mexico City (R2(DL_7) ≈ .7), and Santiago (R2(DL_7) ≈ .8) for the 7th forecast day, respectively; while the weakest pollen forecasts are made for Brisbane (R2(DL_7) ≈ .4) and Seoul (R2(DL_7) ≈ .1) for the 7th forecast day. The global order of the five most important environmental variables in determining the daily total pollen concentrations is, in decreasing order: the past daily total pollen concentration, future 2 m temperature, past 2 m temperature, past soil temperature in 28-100 cm depth, and past soil temperature in 0-7 cm depth. City-related clusters of the most similar distribution of feature importance values of the environmental variables only slightly change on consecutive forecast days for Caxias do Sul, Cape Town, Brisbane, and Mexico City, while they often change for Sydney, Santiago, and Busan. CONCLUSIONS: This new knowledge of the ecological relationships of the most remarkable variables importance for pollen forecast models according to clusters, cities and forecast days is important for developing and improving the accuracy of airborne pollen forecasts.
Impact Factor
Scopus SNIP
Altmetric
12.600
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Allergy ; Artificial Intelligence ; Environmental Variables ; Feature Importance Cluster ; Pollen Forecast; Airborne Pollen; Admissions; Australia; Counts; Asthma
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 0105-4538
e-ISSN 1398-9995
Zeitschrift Allergy
Quellenangaben Band: 79, Heft: 8, Seiten: 2173-2185 Artikelnummer: , Supplement: ,
Verlag Wiley
Verlagsort 111 River St, Hoboken 07030-5774, Nj Usa
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Environmental Medicine (IEM)
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Allergy
PSP-Element(e) G-503400-001
Förderungen EU- COST Action ADOPT
Scopus ID 85198521687
PubMed ID 38995241
Erfassungsdatum 2024-07-15