möglich sobald bei der ZB eingereicht worden ist.
Curvature Filtrations for Graph Generative Model Evaluation.
In: (37th Conference on Neural Information Processing Systems (NeurIPS), 10-16 December 2023, New Orleans, LA). 10010 North Torrey Pines Rd, La Jolla, California 92037 Usa: Neural Information Processing Systems (nips), 2023. 26
Graph generative model evaluation necessitates understanding differences between graphs on the distributional level. This entails being able to harness salient attributes of graphs in an efficient manner. Curvature constitutes one such property that has recently proved its utility in characterising graphs. Its expressive properties, stability, and practical utility in model evaluation remain largely unexplored, however. We combine graph curvature descriptors with emerging methods from topological data analysis to obtain robust, expressive descriptors for evaluating graph generative models.
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Ricci Curvature
Sprache
englisch
Veröffentlichungsjahr
2023
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1049-5258
Konferenztitel
37th Conference on Neural Information Processing Systems (NeurIPS)
Konferzenzdatum
10-16 December 2023
Konferenzort
New Orleans, LA
Quellenangaben
Seiten: 26
Verlag
Neural Information Processing Systems (nips)
Verlagsort
10010 North Torrey Pines Rd, La Jolla, California 92037 Usa
Institut(e)
Institute of AI for Health (AIH)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540003-001
Förderungen
Hightech Agenda Bavaria
Bavarian State Government
EPSRC Turing AI World-Leading Researcher Fellowship
Bavarian State Government
EPSRC Turing AI World-Leading Researcher Fellowship
WOS ID
001220600007008
Erfassungsdatum
2024-07-17