PuSH - Publikationsserver des Helmholtz Zentrums München

Kopic, I.* ; Dedousi, P.* ; Schmidt, S. ; Peng, H.* ; Berezin, O.* ; Weise, A.* ; George, R.M.* ; Mayr, C.* ; Westmeyer, G.G. ; Wolfrum, B.*

Inkjet-printed 3D electrode arrays for recording signals from cortical organoids.

Adv. Mater. Technol., DOI: 10.1002/admt.202400645 (2024)
Verlagsversion DOI
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
Monitoring electrical activity across multiple planes in 3D cell cultures and organoids is imperative to comprehensively understand their functional connections and behavior. However, traditional planar microelectrode arrays (MEAs) are intended for surface recordings and are inadequate in addressing this aspect. The limitations, such as longer production times and limited adaptability imposed by standard clean-room techniques, constrain the design possibilities for 3D electrode arrays and potentially hinder effective cell-electrode coupling. To tackle this challenge, a novel approach is presented that leverages rapid prototyping processes and additive manufacturing in combination with wet etching and electrodeposition to enhance electrode fabrication and performance. The laser-patterned MEAs on glass, polyimide (PI) foil, or polyethylene terephthalate (PET) foil substrates incorporate high-aspect ratio (up to 44:1) ink-jet printed 3D electrode structures with heights up to 1 mm at a pitch of 200 µm, enabling precise recording within cell tissues. The specific shapes of the electrode tips and customizable 3D structures provide great flexibility in electrode placement. The versatility of the 3D MEAs is demonstrated by recording the electrophysiological activity of cortical organoids in situ, paving the way for investigating neural activity under regular or various pathologically altered conditions in vitro in a high throughput manner.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Extracellular Recording ; Microelectrode Arrays ; Microfabrication ; Neuroelectronics ; Organoids; Microelectrode Array; Brain; Stimulation; Devices
ISSN (print) / ISBN 2365-709X
e-ISSN 2365-709X
Verlag Wiley
Verlagsort 111 River St, Hoboken, Nj 07030 Usa
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed
Institut(e) Insitute of Synthetic Biomedicine (ISBM)
Förderungen Federal Ministry of Education and Research (BMBF)