Kim, M. ; Lee, H.R.* ; Ossikovski, R.* ; Jobart-Malfait, A.* ; Lamarque, D.* ; Novikova, T.*
Digital histology of gastric tissue biopsies with liquid crystal-based Mueller microscope and machine learning approach.
In: (Liquid Crystals Optics and Photonic Devices 2024, 8-11 April 2024, Strasbourg). 1000 20th St, Po Box 10, Bellingham, Wa 98227-0010 Usa: SPIE, 2024. DOI: 10.1117/12.3021846 (Proc. SPIE ; 13016)
We investigated gastric tissue biopsies using a liquid crystal-based Mueller microscope and a machine-learning approach to examine the degree of inflammation. Machine learning and statistical analysis were performed with the multidimensional dataset including the polarimetric properties (linear retardance and dichroism, and circular depolarization) and total transmitted intensity images of the unstained thin sections of gastric tissue to identify and quantify the microstructural differences between healthy control, chronic gastritis, and gastric cancer.
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Konferenzbeitrag
Dokumenttyp
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Gastric Cancer ; Mueller Microscopy ; Optical Anisotropy ; Statistical Image Analysis
Keywords plus
ISSN (print) / ISBN
0277-786X
e-ISSN
1996-756X
ISBN
Bandtitel
Konferenztitel
Liquid Crystals Optics and Photonic Devices 2024
Konferzenzdatum
8-11 April 2024
Konferenzort
Strasbourg
Konferenzband
Quellenangaben
Band: 13016
Heft: ,
Seiten: ,
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
SPIE
Verlagsort
1000 20th St, Po Box 10, Bellingham, Wa 98227-0010 Usa
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Förderungen
French Gastroenterology Society
ANR grant EMMIE
Copyright