möglich sobald bei der ZB eingereicht worden ist.
Mean shift clustering as a loss function for accurate and segmentation-aware localization of macromolecules in cryo-electron tomography.
In: (Proceedings - International Symposium on Biomedical Imaging, 27-30 May 2024, Athen). 345 E 47th St, New York, Ny 10017 Usa: Ieee, 2024. DOI: 10.1109/ISBI56570.2024.10635419 (Proceedings - International Symposium on Biomedical Imaging)
Cryo-electron tomography allows us to visualize and analyze the native cellular environment on a molecular level in 3D. To reliably study structures and interactions of proteins, they need to be accurately localized. Recent detection methods train a segmentation network and use post-processing to determine protein locations, often leading to inaccurate and inconsistent locations.We present an end-to-end learning approach for more accurate protein center identification by introducing a differentiable, scoremap-guided Mean Shift clustering implementation. To make training computationally feasible, we sample random cluster points instead of processing the entire image.We show that our Mean Shift loss leads to more accurate cluster center positions compared to the classical Dice loss. When combining these loss functions, we can enhance 3D protein shape preservation and improve clustering with more accurate, localization-focused score maps. In addition to improved protein localization, our method provides more efficient training with sparse ground truth annotations, due to our point sampling strategy.
Altmetric
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Cryo-electron Tomography ; End-to-end Learning ; Mean Shift Clustering ; Protein Localization ; Protein Segmentation
Sprache
englisch
Veröffentlichungsjahr
2024
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
1945-7928
e-ISSN
1945-8452
Konferenztitel
Proceedings - International Symposium on Biomedical Imaging
Konferzenzdatum
27-30 May 2024
Konferenzort
Athen
Verlag
Ieee
Verlagsort
345 E 47th St, New York, Ny 10017 Usa
Institut(e)
Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Helmholtz Pioneer Campus (HPC)
Helmholtz Pioneer Campus (HPC)
POF Topic(s)
30205 - Bioengineering and Digital Health
30203 - Molecular Targets and Therapies
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Enabling and Novel Technologies
Pioneer Campus
Pioneer Campus
PSP-Element(e)
G-530006-001
G-510008-001
G-510008-001
Förderungen
Boehringer Ingelheim Fonds
Munich School for Data Science
Munich School for Data Science
WOS ID
001305705101144
Scopus ID
85203336993
Erfassungsdatum
2024-09-17