PuSH - Publikationsserver des Helmholtz Zentrums München

Mueller, T.T.* ; Chevli, M.* ; Daigavane, A.* ; Rueckert, D.* ; Kaissis, G.

Differentially private graph neural networks for medical population graphs and the impact of the graph structure.

In: (Proceedings - International Symposium on Biomedical Imaging, 27-30 May 2024, Athen). 345 E 47th St, New York, Ny 10017 Usa: Ieee, 2024. DOI: 10.1109/ISBI56570.2024.10635840 (Proceedings - International Symposium on Biomedical Imaging)
DOI
We initiate an empirical investigation of differentially private graph neural networks for medical population graphs. In this context, we examine privacy-utility trade-offs at different privacy levels on both real-world and synthetic datasets and perform auditing through membership inference attacks. Our findings highlight the potential and the challenges of this specific DP application area, which comes with an additional difficulty of graph structure construction that potentially complicates graph deep learning. We find evidence that the underlying graph structure constitutes a potential factor for larger performance gaps by showing a correlation between the degree of graph homophily and the accuracy of the trained model.
Altmetric
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Schlagwörter Differential Privacy ; Graph Neural Networks ; Medical Population Graphs
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 1945-7928
e-ISSN 1945-8452
Konferenztitel Proceedings - International Symposium on Biomedical Imaging
Konferzenzdatum 27-30 May 2024
Konferenzort Athen
Verlag Ieee
Verlagsort 345 E 47th St, New York, Ny 10017 Usa
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-507100-001
Förderungen DOD ADNI
Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health)
ERC
Medical Informatics Initiative
German Ministry of Education and Research
Scopus ID 85203361805
Erfassungsdatum 2024-09-17