möglich sobald bei der ZB eingereicht worden ist.
Unifying local and global shape descriptors to grade soft-tissue sarcomas using graph convolutional networks.
In: (Proceedings - International Symposium on Biomedical Imaging). 345 E 47th St, New York, Ny 10017 Usa: Ieee, 2024. DOI: 10.1109/ISBI56570.2024.10635799 (Proceedings - International Symposium on Biomedical Imaging)
The tumor grading of patients suffering from soft-tissue sarcomas is a critical task, as an accurate classification of this high-mortality cancer entity constitutes a decisive factor in devising optimal treatment strategies. In this work, we focus on distinguishing soft-tissue sarcoma subtypes solely based on their 3D morphological characteristics, derived from tumor segmentation masks. Notably, we direct attention to overcoming the limitations of texture-based methodologies, which often fall short of providing adequate shape delineation. To this end, we propose a novel yet elegant modular geometric deep learning framework coined Global Local Graph Convolutional Network (GloLo-GCN) that integrates local and global shape characteristics into a meaningful unified shape descriptor. Evaluated on a multi-center dataset, our proposed model performs better in soft-tissue sarcoma grading than GCNs based on state-of-the-art graph convolutions and a volumetric 3D convolutional neural network, also evaluated on binary segmentation masks exclusively.
Altmetric
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Gcns ; Shape Analysis ; Tumor Grading
Sprache
englisch
Veröffentlichungsjahr
2024
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
1945-7928
e-ISSN
1945-8452
Konferenztitel
Proceedings - International Symposium on Biomedical Imaging
Verlag
Ieee
Verlagsort
345 E 47th St, New York, Ny 10017 Usa
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Institute of Radiation Medicine (IRM)
Institute of Radiation Medicine (IRM)
POF Topic(s)
30205 - Bioengineering and Digital Health
30203 - Molecular Targets and Therapies
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Enabling and Novel Technologies
Radiation Sciences
Radiation Sciences
PSP-Element(e)
G-507100-001
G-501300-001
G-501300-001
Förderungen
Munich Center for Machine Learning
Konrad Zuse Schools of Excellence in Reliable AI
Wilhelm Sander Foundation in Cancer Research
Konrad Zuse Schools of Excellence in Reliable AI
Wilhelm Sander Foundation in Cancer Research
WOS ID
001305705103099
Scopus ID
85203346460
Erfassungsdatum
2024-09-16