möglich sobald bei der ZB eingereicht worden ist.
An amortized approach to non-linear mixed-effects modeling based on neural posterior estimation.
In: (41st International Conference on Machine Learning, 21-27 July 2024, Vienna). 2024. 1865-1901 (Proceedings of Machine Learning Research ; 235)
Non-linear mixed-effects models are a powerful tool for studying heterogeneous populations in various fields, including biology, medicine, economics, and engineering. Here, the aim is to find a distribution over the parameters that describe the whole population using a model that can generate simulations for an individual of that population. However, fitting these distributions to data is computationally challenging if the description of individuals is complex and the population is large. To address this issue, we propose a novel machine learning-based approach: We exploit neural density estimation based on conditional normalizing flows to approximate individual-specific posterior distributions in an amortized fashion, thereby allowing for efficient inference of population parameters. Applying this approach to problems from cell biology and pharmacology, we demonstrate its unseen flexibility and scalability to large data sets compared to established methods.
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Sprache
englisch
Veröffentlichungsjahr
2024
HGF-Berichtsjahr
2024
Konferenztitel
41st International Conference on Machine Learning
Konferzenzdatum
21-27 July 2024
Konferenzort
Vienna
Quellenangaben
Band: 235,
Seiten: 1865-1901
Institut(e)
Institute of Computational Biology (ICB)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-553800-001
Förderungen
Joachim Herz Stiftung
WOS ID
001347135501035
Scopus ID
85203812947
Erfassungsdatum
2024-09-20