PuSH - Publikationsserver des Helmholtz Zentrums München

Gaudin, R.* ; Otto, W.* ; Ghanad, I.* ; Kewenig, S.* ; Rendenbach, C.* ; Alevizakos, V.* ; Grün, P.* ; Kofler, F. ; Heiland, M.* ; von See, C.*

Enhanced osteoporosis detection using artificial intelligence: A deep learning approach to panoramic radiographs with an emphasis on the mental foramen.

Med. Sci. 12:49 (2024)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Osteoporosis, a skeletal disorder, is expected to affect 60% of women aged over 50 years. Dual-energy X-ray absorptiometry (DXA) scans, the current gold standard, are typically used post-fracture, highlighting the need for early detection tools. Panoramic radiographs (PRs), common in annual dental evaluations, have been explored for osteoporosis detection using deep learning, but methodological flaws have cast doubt on otherwise optimistic results. This study aims to develop a robust artificial intelligence (AI) application for accurate osteoporosis identification in PRs, contributing to early and reliable diagnostics. A total of 250 PRs from three groups (A: osteoporosis group, B: non-osteoporosis group matching A in age and gender, C: non-osteoporosis group differing from A in age and gender) were cropped to the mental foramen region. A pretrained convolutional neural network (CNN) classifier was used for training, testing, and validation with a random split of the dataset into subsets (A vs. B, A vs. C). Detection accuracy and area under the curve (AUC) were calculated. The method achieved an F1 score of 0.74 and an AUC of 0.8401 (A vs. B). For young patients (A vs. C), it performed with 98% accuracy and an AUC of 0.9812. This study presents a proof-of-concept algorithm, demonstrating the potential of deep learning to identify osteoporosis in dental radiographs. It also highlights the importance of methodological rigor, as not all optimistic results are credible.
Impact Factor
Scopus SNIP
Altmetric
0.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Convolutional Neural Network (cnn) ; Deep Learning ; Early Diagnostic Tool ; Osteoporosis Detection ; Panoramic Radiographs; Bone-density; Management; Diagnosis; Index
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2076-3271
e-ISSN 2076-3271
Zeitschrift Medical Sciences
Quellenangaben Band: 12, Heft: 3, Seiten: , Artikelnummer: 49 Supplement: ,
Verlag MDPI
Verlagsort St Alban-anlage 66, Ch-4052 Basel, Switzerland
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-530001-001
Förderungen Elsbeth Boshoff Stiftung
Scopus ID 85204757912
PubMed ID 39311162
Erfassungsdatum 2024-10-29