PuSH - Publikationsserver des Helmholtz Zentrums München

Maalmi, H.* ; Nguyen, B.H.P. ; Strom, A.* ; Zaharia, O.P.* ; Straßburger, K.* ; Bönhof, G.J.* ; Rathmann, W.* ; Trenkamp, S.* ; Burkart, V.* ; Szendrödi, J.* ; Menden, M.P. ; Ziegler, D.* ; Roden, M.* ; Herder, C.*

Prediction of polyneuropathy in recent-onset diabetes: A machine learning algorithm using blood-based protein biomarkers and standard demographic and clinical features.

Poster: (2023)
Verlagsversion DOI
Closed
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Background Blood-based protein biomarkers may be an attractive diagnostic tool to detect diabetic sensorimotor polyneuropathy (DSPN) in routine clinical examinations. We aimed to compare a protein-based model with a model using traditional risk factors in detecting the presence of DSPN in individuals recently diagnosed with diabetes from the German Diabetes Study. Methods A total of 135 inflammatory and neuronal protein biomarkers were measured using proximity extension assay in blood samples of 66 and 357 individuals with and without DSPN, respectively, based on the Toronto Consensus Criteria. We constructed (i) a protein-based prediction model using lasso logistic regression, (ii) an optimized traditional risk model with age, sex, waist circumference, and diabetes type as demographic/clinical attributes selected a priori, and (iii) a model combining both. The AUC (95% CI) and robust bootstrapping assessed predictive performances. Results Lasso logistic regression selected the neurofilament light chain (NFL) and fibroblast growth factor 19 (FGF-19) as the most predictive protein biomarkers for detecting DSPN in individuals with recent-onset diabetes. The proteomics model achieved an AUC of 0.66 (0.59, 0.74), while the demographic/clinical model had an AUC of 0.68 (0.62, 0.76). However, combined features boosted the model performance to an AUC of 0.75 (0.68, 0.82). Conclusion A model combining two objective blood-based biomarkers (NFL and FGF-19) and four standard demographic and clinical parameters (age, sex, waist circumference and diabetes type) has an acceptable performance for detecting early DSPN. This model could complement clinical and neurophysiological testing.
Altmetric
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Konferenzposter
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 1861-9002
e-ISSN 1861-9010
Quellenangaben Band: 18, Heft: S 01, Seiten: , Artikelnummer: S36 Supplement: ,
Verlag Thieme
Begutachtungsstatus Peer reviewed
POF Topic(s) 90000 - German Center for Diabetes Research
30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-501900-382
G-554700-001
Erfassungsdatum 2024-10-18