möglich sobald bei der ZB eingereicht worden ist.
ODEFormer: Symbolic regression of dynamical systems with transformers.
In: (12th International Conference on Learning Representations, ICLR 2024, 07-11 May 2024, Hybrid, Vienna). 2024.
We introduce ODEFormer, the first transformer able to infer multidimensional ordinary differential equation (ODE) systems in symbolic form from the observation of a single solution trajectory. We perform extensive evaluations on two datasets: (i) the existing 'Strogatz' dataset featuring two-dimensional systems; (ii) ODEBench, a collection of one- to four-dimensional systems that we carefully curated from the literature to provide a more holistic benchmark. ODEFormer consistently outperforms existing methods while displaying substantially improved robustness to noisy and irregularly sampled observations, as well as faster inference. We release our code, model and benchmark at https://github.com/sdascoli/odeformer. © 2024 12th International Conference on Learning Representations, ICLR 2024.
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Sprache
englisch
Veröffentlichungsjahr
2024
HGF-Berichtsjahr
2024
Konferenztitel
12th International Conference on Learning Representations, ICLR 2024
Konferzenzdatum
07-11 May 2024
Konferenzort
Hybrid, Vienna
Institut(e)
Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Institute of Computational Biology (ICB)
Institute of Computational Biology (ICB)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530003-001
G-503800-004
G-503800-004
Scopus ID
85195391635
Erfassungsdatum
2024-10-21