Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Diffusion models for unsupervised anomaly detection in fetal brain ultrasound.
In: (Simplifying Medical Ultrasound). Berlin [u.a.]: Springer, 2025. 220-230 (Lect. Notes Comput. Sc. ; 15186 LNCS)
Ultrasonography is an essential tool in mid-pregnancy for assessing fetal development, appreciated for its non-invasive and real-time imaging capabilities. Yet, the interpretation of ultrasound images is often complicated by acoustic shadows, speckle, and other artifacts that obscure crucial diagnostic details. To address these challenges, our study presents a novel unsupervised anomaly detection framework specifically designed for fetal ultrasound imaging. This framework incorporates gestational age filtering, precise identification of fetal standard planes, and targeted segmentation of brain regions to enhance diagnostic accuracy. Furthermore, we introduce the use of denoising diffusion probabilistic models in this context, marking a significant innovation in detecting previously unrecognized anomalies. We rigorously evaluated the framework using various diffusion-based anomaly detection methods, noise types, and noise levels. Notably, AutoDDPM emerged as the most effective, achieving an area under the precision-recall curve of 79.8% in detecting anomalies. This advancement holds promise for improving the tools available for nuanced and effective prenatal diagnostics.
Altmetric
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Fetal Ultrasound Screening ; Medical Imaging
Sprache
englisch
Veröffentlichungsjahr
2025
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
Konferenztitel
Simplifying Medical Ultrasound
Zeitschrift
Lecture Notes in Computer Science
Quellenangaben
Band: 15186 LNCS,
Seiten: 220-230
Verlag
Springer
Verlagsort
Berlin [u.a.]
Institut(e)
Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Institute for Machine Learning in Biomed Imaging (IML)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530005-001
G-507100-001
G-507100-001
Förderungen
Helmholtz Association under the joint research school 'Munich School for Data Science'
EVUK program ("Next-generation Al for Integrated Diagnostics") of the Free State of Bavaria
EVUK program ("Next-generation Al for Integrated Diagnostics") of the Free State of Bavaria
WOS ID
001435759400021
Scopus ID
85206468612
Erfassungsdatum
2024-10-22