Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Learning to match 2D keypoints across preoperative MR and intraoperative ultrasound.
In: (Simplifying Medical Ultrasound). Berlin [u.a.]: Springer, 2025. 78-87 (Lect. Notes Comput. Sc. ; 15186 LNCS)
We propose in this paper a texture-invariant 2D keypoints descriptor specifically designed for matching preoperative Magnetic Resonance (MR) images with intraoperative Ultrasound (US) images. We introduce a matching-by-synthesis strategy, where intraoperative US images are synthesized from MR images accounting for multiple MR modalities and intraoperative US variability. We build our training set by enforcing keypoints localization over all images then train a patient-specific descriptor network that learns texture-invariant discriminant features in a supervised contrastive manner, leading to robust keypoints descriptors. Our experiments on real cases with ground truth show the effectiveness of the proposed approach, outperforming the state-of-the-art methods and achieving 80.35% matching precision on average.
Altmetric
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Registration
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
2024
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
Konferenztitel
Simplifying Medical Ultrasound
Zeitschrift
Lecture Notes in Computer Science
Quellenangaben
Band: 15186 LNCS,
Seiten: 78-87
Verlag
Springer
Verlagsort
Berlin [u.a.]
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
Förderungen
National Institutes of Health
WOS ID
001435759400008
Scopus ID
85206491077
PubMed ID
39736888
Erfassungsdatum
2024-10-22