möglich sobald bei der ZB eingereicht worden ist.
Denoising diffusion models for 3D healthy brain tissue inpainting.
In: (Deep Generative Models). Berlin [u.a.]: Springer, 2025. 87-97 (Lect. Notes Comput. Sc. ; 15224 LNCS)
Monitoring diseases that affect the brain’s structural integrity requires automated analysis of magnetic resonance images, e.g., for the evaluation of volumetric changes. However, many of the evaluation tools are optimized for analyzing healthy tissue. To enable the evaluation of scans containing pathological tissue, it is therefore required to restore healthy tissue in the pathological areas. In this work, we explore and extend denoising diffusion probabilistic models (DDPMs) for consistent inpainting of healthy 3D brain tissue. We modify state-of-the-art 2D, pseudo-3D, and 3D DDPMs working in the image space, as well as 3D latent and 3D wavelet DDPMs, and train them to synthesize healthy brain tissue. Our evaluation shows that the pseudo-3D model performs best regarding the structural-similarity index, peak signal-to-noise ratio, and mean squared error. To emphasize the clinical relevance, we fine-tune this model on synthetic multiple sclerosis lesions and evaluate it on a downstream brain tissue segmentation task, where it outperforms the established FMRIB Software Library (FSL) lesion-filling method.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Diffusion Model ; Inpainting ; Magnetic Resonance Images
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
Konferenztitel
Deep Generative Models
Zeitschrift
Lecture Notes in Computer Science
Quellenangaben
Band: 15224 LNCS,
Seiten: 87-97
Verlag
Springer
Verlagsort
Berlin [u.a.]
Nichtpatentliteratur
Publikationen
Institut(e)
Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Institute for Machine Learning in Biomed Imaging (IML)
Institute for Machine Learning in Biomed Imaging (IML)