PuSH - Publikationsserver des Helmholtz Zentrums München

Neukirchen, C.* ; Saraji-Bozorgzad, M.R.* ; Mäder, M.* ; Mudan, A.P.* ; Czasch, P.* ; Becker, J. ; Di Bucchianico, S. ; Trapp, C.* ; Zimmermann, R. ; Adam, T.

Comprehensive elemental and physical characterization of vehicle brake wear emissions from two different brake pads following the Global Technical Regulation methodology.

J. Hazard. Mater. 482:136609 (2024)
Verlagsversion DOI PMC
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
Non-exhaust emissions have gained increasing attention during the last years, with the upcoming EURO 7 regulation defining maximum PM10 emission factors for tire and brake emissions for the first time. This study, therefore, focusses on broadening the knowledge on chemical composition and physical characteristics of brake dust to define emission factors for heavy metal and organic pollutants. Particles from two pads were analyzed utilizing the Worldwide Harmonised Light Vehicle Test Procedure (WLTP) brake cycle. Geometric mean diameters for both pads were found with a bimodal distribution in the ultrafine range. PM10 emission factors of 15.1 ± 0.1 mg/km and 16.3 ± 0.4 mg/km were measured, which is 2.15 and 2.32 times higher than upcoming maximum permitted emission factor of 7 mg/km. On average 54.9 % and 58.1 % of PM10 was emitted as iron, with a wide variety of Fe concentrations between 43 - 75 % by mass found in individual particles. Other heavy metals, such as Cu, Cr, Mn and Zn, were also found and a high contribution of wear from the brake disc was noticeable, based on the elemental composition. Fe emission factors calculated from the WLTP brake cycle were 8-9 times higher than previously reported values in literature, while Cu levels were significantly lower based on recent trends in brake pad formulations. Four different PAH were detected even at the relatively low temperatures that are common for the WLTP brake test cycle.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Brake Wear ; Chemical Composition ; Euro 7 ; Gtr24 ; Inductively Coupled Plasma Mass Spectrometry ; Non-exhaust Emissions ; Scanning Electron Microscopy; Particles; Friction
ISSN (print) / ISBN 0304-3894
e-ISSN 1873-3336
Quellenangaben Band: 482, Heft: , Seiten: , Artikelnummer: 136609 Supplement: ,
Verlag Elsevier
Verlagsort Radarweg 29, 1043 Nx Amsterdam, Netherlands
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed
Förderungen Universitat der Bundeswehr Munchen
Project ULTRHAS - ULtrafine particles from TRansportation - Health Assessment of Sources under the EU's Research and Innovation programme Horizon
European Union - NextGenerationEU
Dtec.bw - Digitalization and Technology Research Center of the Bundeswehr