Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Neural cellular automata for lightweight, robust and explainable classification of white blood cell images.
In: (Medical Image Computing and Computer Assisted Intervention – MICCAI 2024). Berlin [u.a.]: Springer, 2024. 693-702 (Lect. Notes Comput. Sc. ; 15003)
Diagnosis of hematological malignancies depends on accurate identification of white blood cells in peripheral blood smears. Deep learning techniques are emerging as a viable solution to scale and optimize this process by automatic cell classification. However, these techniques face several challenges such as limited generalizability, sensitivity to domain shifts, and lack of explainability. Here, we introduce a novel approach for white blood cell classification based on neural cellular automata (NCA). We test our approach on three datasets of white blood cell images and show that we achieve competitive performance compared to conventional methods. Our NCA-based method is significantly smaller in terms of parameters and exhibits robustness to domain shifts. Furthermore, the architecture is inherently explainable, providing insights into the decision process for each classification, which helps to understand and validate model predictions. Our results demonstrate that NCA can be used for image classification, and that they address key challenges of conventional methods, indicating a high potential for applicability in clinical practice.
Scopus
Cited By
Cited By
Altmetric
1
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Neural Cellular Automata; Explainability; Single-Cell Classification; Domain Generalization
Sprache
englisch
Veröffentlichungsjahr
2024
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
Konferenztitel
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024
Zeitschrift
Lecture Notes in Computer Science
Quellenangaben
Band: 15003,
Seiten: 693-702
Verlag
Springer
Verlagsort
Berlin [u.a.]
Institut(e)
Human-Centered AI (HCA)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540007-001
Förderungen
Hightech Agenda Bayern
WOS ID
001342227700065
Scopus ID
105004660697
Erfassungsdatum
2024-12-09