PuSH - Publikationsserver des Helmholtz Zentrums München

Bercea, C.-I. ; Wiestler, B.* ; Rueckert, D.* ; Schnabel, J.A.

Diffusion models with implicit guidance for medical anomaly detection.

In: (27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024, 06-10 October 2024, Marrakesh, Morocco). Berlin [u.a.]: Springer, 2024. 211-220 (Lect. Notes Comput. Sc. ; 15011)
DOI
Diffusion models have advanced unsupervised anomaly detection by improving the transformation of pathological images into pseudo-healthy equivalents. Nonetheless, standard approaches may compromise critical information during pathology removal, leading to restorations that do not align with unaffected regions in the original scans. Such discrepancies can inadvertently increase false positive rates and reduce specificity, complicating radiological evaluations. This paper introduces Temporal Harmonization for Optimal Restoration (THOR), which refines the reverse diffusion process by integrating implicit guidance through intermediate masks. THOR aims to preserve the integrity of healthy tissue details in reconstructed images, ensuring fidelity to the original scan in areas unaffected by pathology. Comparative evaluations reveal that THOR surpasses existing diffusion-based methods in retaining detail and precision in image restoration and detecting and segmenting anomalies in brain MRIs and wrist X-rays. Code: https://github.com/compai-lab/2024-miccai-bercea-thor.git.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Konferenzbeitrag
Korrespondenzautor
Schlagwörter Generative AI; OoD; Brain MRI; Wrist X-ray
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Konferenztitel 27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024
Konferzenzdatum 06-10 October 2024
Konferenzort Marrakesh, Morocco
Quellenangaben Band: 15011, Heft: , Seiten: 211-220 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin [u.a.]
Nichtpatentliteratur Publikationen
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)
Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Förderungen Helmholtz Association under the joint research school 'Munich School for Data Science'
EVUK program ("Next-generation Al for Integrated Diagnostics") of the Free State of Bavaria