möglich sobald bei der ZB eingereicht worden ist.
Interpretable representation learning of cardiac MRI via attribute regularization.
In: (Medical Image Computing and Computer Assisted Intervention – MICCAI 2024). Berlin [u.a.]: Springer, 2024. 492-501 (Lect. Notes Comput. Sc. ; 15010)
Interpretability is essential in medical imaging to ensure that clinicians can comprehend and trust artificial intelligence models. Several approaches have been recently considered to encode attributes in the latent space to enhance its interpretability. Notably, attribute regularization aims to encode a set of attributes along the dimensions of a latent representation. However, this approach is based on Variational AutoEncoder and suffers from blurry reconstruction. In this paper, we propose an Attributed-regularized Soft Introspective Variational Autoencoder that combines attribute regularization of the latent space within the framework of an adversarially trained variational autoencoder. We demonstrate on short-axis cardiac Magnetic Resonance images of the UK Biobank the ability of the proposed method to address blurry reconstruction issues of variational autoencoder methods while preserving the latent space interpretability.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Cardiac Imaging; Interpretability
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
Konferenztitel
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024
Zeitschrift
Lecture Notes in Computer Science
Quellenangaben
Band: 15010,
Seiten: 492-501
Verlag
Springer
Verlagsort
Berlin [u.a.]
Nichtpatentliteratur
Publikationen
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Förderungen
Helmholtz Association