möglich sobald bei der ZB eingereicht worden ist.
Interpretable representation learning of cardiac MRI via attribute regularization.
In: (Medical Image Computing and Computer Assisted Intervention – MICCAI 2024). Berlin [u.a.]: Springer, 2024. 492-501 (Lect. Notes Comput. Sc. ; 15010)
Interpretability is essential in medical imaging to ensure that clinicians can comprehend and trust artificial intelligence models. Several approaches have been recently considered to encode attributes in the latent space to enhance its interpretability. Notably, attribute regularization aims to encode a set of attributes along the dimensions of a latent representation. However, this approach is based on Variational AutoEncoder and suffers from blurry reconstruction. In this paper, we propose an Attributed-regularized Soft Introspective Variational Autoencoder that combines attribute regularization of the latent space within the framework of an adversarially trained variational autoencoder. We demonstrate on short-axis cardiac Magnetic Resonance images of the UK Biobank the ability of the proposed method to address blurry reconstruction issues of variational autoencoder methods while preserving the latent space interpretability.
Altmetric
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Cardiac Imaging; Interpretability
Sprache
englisch
Veröffentlichungsjahr
2024
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
Konferenztitel
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024
Zeitschrift
Lecture Notes in Computer Science
Quellenangaben
Band: 15010,
Seiten: 492-501
Verlag
Springer
Verlagsort
Berlin [u.a.]
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
G-530005-001
G-530005-001
Förderungen
Helmholtz Association
WOS ID
001342237100046
Erfassungsdatum
2024-12-09