Predicting cell morphological responses to perturbations using generative modeling.
Nat. Commun. 16:505 (2025)
Advancements in high-throughput screenings enable the exploration of rich phenotypic readouts through high-content microscopy, expediting the development of phenotype-based drug discovery. However, analyzing large and complex high-content imaging screenings remains challenging due to incomplete sampling of perturbations and the presence of technical variations between experiments. To tackle these shortcomings, we present IMage Perturbation Autoencoder (IMPA), a generative style-transfer model predicting morphological changes of perturbations across genetic and chemical interventions. We show that IMPA accurately captures morphological and population-level changes of both seen and unseen perturbations on breast cancer and osteosarcoma cells. Additionally, IMPA accounts for batch effects and can model perturbations across various sources of technical variation, further enhancing its robustness in diverse experimental conditions. With the increasing availability of large-scale high-content imaging screens generated by academic and industrial consortia, we envision that IMPA will facilitate the analysis of microscopy data and enable efficient experimental design via in-silico perturbation prediction.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Image Style Transfer; Dna-replication
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
2041-1723
e-ISSN
2041-1723
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 16,
Heft: 1,
Seiten: ,
Artikelnummer: 505
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
London
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
Förderungen
- German Federal Ministry of Education and Research (BMBF) through - HOPARL project (grant number 031L0289A) - European Union (ERC, DeepCell - grant number 101054957)
German Federal Ministry of Education and Research (BMBF)
European Union (ERC)
Helmholtz Association under the joint research school Munich School for Data Science
Wellcome Sanger Institute
Wellcome Trust
Open Targets (Drug2Cell Grant)
Copyright
Erfassungsdatum
2025-03-19