Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Cellular responses of lung cells cultured at an air-liquid interface are influenced by spatial nanoparticle deposition patterns in an in vitro aerosol exposure system.
Aerosol Sci. Technol. 59, 1198-1209 (2025)
The deposition of inhaled particles is typically highly localized in both the bronchial and alveolar region of the lung displaying spot-like, line-like and other deposition patterns. However, knowledge is very limited on how different deposition patterns may influence downstream cellular responses. In this study, the Dosimetric Aerosol in Vitro Inhalation Device (DAVID) was used for dose-controlled deposition of cupric oxide nanoparticles (CuONPs) in four different patterns (i.e., spot, ring, line and circle) on human alveolar A549 cells cultured at an air-liquid interface (ALI). After CuONPs deposition (<15 min) and a 24 h incubation phase, cell viability, apoptotic/necrotic cell count, and gene expressions were measured. At the lowest dose of ∼5 µg/cm2, the line pattern resulted in the lowest viability of cells (57%), followed by the spot pattern (85%) while the ring and circle patterns exhibited >90% viability, compared to the particle free air control. At the highest dose of ∼20 µg/cm2, the viability reduced to 44%-60% for all patterns. Also, the gene profile was found to depend on deposition pattern. The results demonstrate that deposition pattern is a critical parameter influencing cellular response, thus an important parameter to consider in toxicity and drug delivery studies. Furthermore, the ability of DAVID to control the delivery of aerosolized particles in various deposition patterns was demonstrated, which enables implementation of nonhomogeneous particle deposition patterns that mimic real-life human inhalation exposures in future in vitro toxicology studies. Copyright © 2025 American Association for Aerosol Research.
Impact Factor
Scopus SNIP
Altmetric
2.100
0.942
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Vishal Verma
Sprache
englisch
Veröffentlichungsjahr
2025
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0278-6826
e-ISSN
1521-7388
Zeitschrift
Aerosol Science and Technology
Quellenangaben
Band: 59,
Heft: 10,
Seiten: 1198-1209
Verlag
Taylor & Francis
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Lung Health and Immunity (LHI)
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Lung Research
PSP-Element(e)
G-505000-008
Förderungen
National Institutes of Health
Scopus ID
85214864032
PubMed ID
41050869
Erfassungsdatum
2025-03-21