PuSH - Publikationsserver des Helmholtz Zentrums München

Biases in machine-learning models of human single-cell data.

Nat. Cell Biol. 27, 384–392 (2025)
Postprint DOI PMC
Open Access Green
Recent machine-learning (ML)-based advances in single-cell data science have enabled the stratification of human tissue donors at single-cell resolution, promising to provide valuable diagnostic and prognostic insights. However, such insights are susceptible to biases. Here we discuss various biases that emerge along the pipeline of ML-based single-cell analysis, ranging from societal biases affecting whose samples are collected, to clinical and cohort biases that influence the generalizability of single-cell datasets, biases stemming from single-cell sequencing, ML biases specific to (weakly supervised or unsupervised) ML models trained on human single-cell samples and biases during the interpretation of results from ML models. We end by providing methods for single-cell data scientists to assess and mitigate biases, and call for efforts to address the root causes of biases.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Korrespondenzautor
Schlagwörter Genomics; Racism; Race
ISSN (print) / ISBN 1465-7392
e-ISSN 1476-4679
Zeitschrift Nature Cell Biology
Quellenangaben Band: 27, Heft: , Seiten: 384–392 Artikelnummer: , Supplement: ,
Verlag Nature Publishing Group
Verlagsort Heidelberger Platz 3, Berlin, 14197, Germany
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed
Förderungen Helmholtz Association under the joint research school 'Munich School for Data Science'