PuSH - Publikationsserver des Helmholtz Zentrums München

Ripart, M.* ; Spitzer, H. ; Williams, L.Z.J.* ; Walger, L.* ; Chen, A.* ; Napolitano, A.* ; Rossi-Espagnet, C.* ; Foldes, S.T.* ; Hu, W.* ; Mo, J.* ; Likeman, M.* ; Rüber, T.* ; Caligiuri, M.E.* ; Gambardella, A.* ; Guttler, C.* ; Tietze, A.* ; Lenge, M.* ; Guerrini, R.* ; Cohen, N.T.* ; Wang, I.* ; Kloster, A.* ; Pinborg, L.H.* ; Hamandi, K.* ; Jackson, G.* ; Tortora, D.* ; Tisdall, M.* ; Conde-Blanco, E.* ; Pariente, J.C.* ; Perez-Enriquez, C.* ; Gonzalez-Ortiz, S.* ; Mullatti, N.* ; Vecchiato, K.* ; Liu, Y.* ; Kälviäinen, R.* ; Sokol, D.* ; Shetty, J.* ; Sinclair, B.* ; Vivash, L.* ; Willard, A.* ; Winston, G.P.* ; Yasuda, C.* ; Cendes, F.* ; Shinohara, R.T.* ; Duncan, J.S.* ; Cross, J.H.* ; Baldeweg, T.* ; Robinson, E.C.* ; Iglesias, J.E.* ; Adler, S.* ; Wagstyl, K.* ; Fawaz, A.* ; De Benedictis, A.* ; De Palma, L.* ; Zhang, K.* ; Labate, A.* ; Barba, C.* ; You, X.* ; Gaillard, W.D.* ; Tang, Y.* ; Wang, S.* ; Davies, S.* ; Semmelroch, M.* ; Severino, M.* ; Striano, P.* ; Chari, A.* ; D'Arco, F.* ; Mankad, K.* ; Bargallo, N.* ; Pascual-Diaz, S.* ; Delgado-Martinez, I.* ; O'Muircheartaigh, J.* ; Abela, E.* ; Kandasamy, J.* ; McLellan, A.* ; Desmond, P.* ; Lui, E.* ; O'Brien, T.J.* ; Whitaker, K.*

Detection of epileptogenic focal cortical dysplasia using graph neural networks: A MELD Study.

JAMA Neurol. 82, 397-406 (2025)
Postprint DOI PMC
Open Access Green
IMPORTANCE: A leading cause of surgically remediable, drug-resistant focal epilepsy is focal cortical dysplasia (FCD). FCD is challenging to visualize and often considered magnetic resonance imaging (MRI) negative. Existing automated methods for FCD detection are limited by high numbers of false-positive predictions, hampering their clinical utility. OBJECTIVE: To evaluate the efficacy and interpretability of graph neural networks in automatically detecting FCD lesions on MRI scans. DESIGN, SETTING, AND PARTICIPANTS: In this multicenter diagnostic study, retrospective MRI data were collated from 23 epilepsy centers worldwide between 2018 and 2022, as part of the Multicenter Epilepsy Lesion Detection (MELD) Project, and analyzed in 2023. Data from 20 centers were split equally into training and testing cohorts, with data from 3 centers withheld for site-independent testing. A graph neural network (MELD Graph) was trained to identify FCD on surface-based features. Network performance was compared with an existing algorithm. Feature analysis, saliencies, and confidence scores were used to interpret network predictions. In total, 34 surface-based MRI features and manual lesion masks were collated from participants, 703 patients with FCD-related epilepsy and 482 controls, and 57 participants were excluded during MRI quality control. MAIN OUTCOMES AND MEASURES: Sensitivity, specificity, and positive predictive value (PPV) of automatically identified lesions. RESULTS: In the test dataset, the MELD Graph had a sensitivity of 81.6% in histopathologically confirmed patients seizure-free 1 year after surgery and 63.7% in MRI-negative patients with FCD. The PPV of putative lesions from the 260 patients in the test dataset (125 female [48%] and 135 male [52%]; mean age, 18.0 [IQR, 11.0-29.0] years) was 67% (70% sensitivity; 60% specificity), compared with 39% (67% sensitivity; 54% specificity) using an existing baseline algorithm. In the independent test cohort (116 patients; 62 female [53%] and 54 male [47%]; mean age, 22.5 [IQR, 13.5-27.5] years), the PPV was 76% (72% sensitivity; 56% specificity), compared with 46% (77% sensitivity; 47% specificity) using the baseline algorithm. Interpretable reports characterize lesion location, size, confidence, and salient features. CONCLUSIONS AND RELEVANCE: In this study, the MELD Graph represented a state-of-the-art, openly available, and interpretable tool for FCD detection on MRI scans with significant improvements in PPV. Its clinical implementation holds promise for early diagnosis and improved management of focal epilepsy, potentially leading to better patient outcomes.
Impact Factor
Scopus SNIP
Altmetric
21.300
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2168-6149
e-ISSN 2168-6157
Zeitschrift JAMA neurology
Quellenangaben Band: 82, Heft: 4, Seiten: 397-406 Artikelnummer: , Supplement: ,
Verlag American Medical Association
Verlagsort Chicago, Ill.
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Scopus ID 86000299132
PubMed ID 39992650
Erfassungsdatum 2025-04-28