Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Fat-suppressed breast MRI synthesis for domain adaptation in tumour segmentation.
In: (Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care). Berlin [u.a.]: Springer, 2025. 202-211 (Lect. Notes Comput. Sc. ; 15451 LNCS)
Heterogeneity in dynamic contrast-enhanced breast MRI acquisition protocols hinders the generalization of automatic tumour segmentation tools. While fat-suppressed MRI acquisition is common, some vendors do not provide these sequences, making a segmentation model trained with fat-suppressed images unusable for non-fat-suppressed cases. In this study, we propose two strategies to alleviate this issue. The first approach involves translating non-fat-suppressed to fat-suppressed breast MRI. The second approach integrates synthetic non-fat-suppressed MRI into the training pipeline of tumour segmentation models. Our experimental results demonstrate that both approaches significantly improve segmentation performance on non-fat-suppressed MRI, suggesting that domain adaptation techniques based on image synthesis can enhance the accuracy and reliability of tumour segmentation in breast MRI. The generative models will be made publicly available at medigan library (medigan [18] GitHub repository).
Altmetric
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Breast Cancer ; Deep Learning ; Fat Suppression ; Generative Models ; Image-to-image Translation ; Synthetic Data
Sprache
englisch
Veröffentlichungsjahr
2025
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
Konferenztitel
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care
Zeitschrift
Lecture Notes in Computer Science
Quellenangaben
Band: 15451 LNCS,
Seiten: 202-211
Verlag
Springer
Verlagsort
Berlin [u.a.]
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
Förderungen
Juan de la Cierva fellowship
AGAUR
MICINN
Spain's Ministry of Science and Innovation
EU
AGAUR
MICINN
Spain's Ministry of Science and Innovation
EU
WOS ID
001544124300020
Scopus ID
85219187011
Erfassungsdatum
2025-05-06