PuSH - Publikationsserver des Helmholtz Zentrums München

Sharma, M.* ; Rainforth, T.* ; Teh, Y.W.* ; Fortuin, V.

Incorporating unlabelled data into bayesian neural networks.

Trans. Machine Learn. Res. 2024, accepted (2024)
Verlagsversion
Closed
Conventional Bayesian Neural Networks (BNNs) are unable to leverage unlabelled data to improve their predictions. To overcome this limitation, we introduce Self-Supervised Bayesian Neural Networks, which use unlabelled data to learn models with suitable prior predictive distributions. This is achieved by leveraging contrastive pretraining techniques and optimising a variational lower bound. We then show that the prior predictive distributions of self-supervised BNNs capture problem semantics better than conventional BNN priors. In turn, our approach offers improved predictive performance over conventional BNNs, especially in low-budget regimes.
Impact Factor
Scopus SNIP
0.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2835-8856
e-ISSN 2835-8856
Quellenangaben Band: 2024 Heft: , Seiten: , Artikelnummer: , Supplement: ,
Verlag Journal of Machine Learning Research Inc.
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-530015-001
Scopus ID 85219570717
Erfassungsdatum 2025-05-10