PuSH - Publikationsserver des Helmholtz Zentrums München

Mueller, T.T.* ; Starck, S.* ; Bintsi, K.M.* ; Ziller, A.* ; Braren, R.* ; Kaissis, G. ; Rueckert, D.*

Are Population Graphs Really as Powerful as Believed?

Trans. Machine Learn. Res. 2024, accepted (2024)
Verlagsversion
Open Access Hybrid
Creative Commons Lizenzvertrag
Population graphs and their use in combination with graph neural networks (GNNs) have demonstrated promising results for multi-modal medical data integration and improving disease diagnosis and prognosis. Several different methods for constructing these graphs and advanced graph learning techniques have been established to maximise the predictive power of GNNs on population graphs. However, in this work, we raise the question of whether existing methods are really strong enough by showing that simple baseline methods –such as random forests or linear regressions–, perform on par with advanced graph learning models on several population graph datasets for a variety of different clinical applications. We use the commonly used public population graph datasets TADPOLE and ABIDE, a brain age estimation and a cardiac dataset from the UK Biobank, and a real-world in-house COVID dataset. We (a) investigate the impact of different graph construction methods, graph convolutions, and dataset size and complexity on GNN performance and (b) discuss the utility of GNNs for multi-modal data integration in the context of population graphs. Based on our results, we argue towards the need for “better” graph construction methods or innovative applications for population graphs to render them beneficial.
Impact Factor
Scopus SNIP
0.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2835-8856
e-ISSN 2835-8856
Quellenangaben Band: 2024 Heft: , Seiten: , Artikelnummer: , Supplement: ,
Verlag Journal of Machine Learning Research Inc.
Begutachtungsstatus Peer reviewed
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-507100-001
Scopus ID 85219567491
Erfassungsdatum 2025-05-10