PuSH - Publikationsserver des Helmholtz Zentrums München

von Rohrscheidt, J.C. ; Rieck, B. ; Schmon, S.M.*

Bayesian computation meets topology.

Trans. Machine Learn. Res. 2024, accepted (2024)
Verlagsversion
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
Computational topology recently started to emerge as a novel paradigm for characterising the ‘shape’ of high-dimensional data, leading to powerful algorithms in (un)supervised representation learning. While capable of capturing prominent features at multiple scales, topological methods cannot readily be used for Bayesian inference. We develop a novel approach that bridges this gap, making it possible to perform parameter estimation in a Bayesian framework, using topology-based loss functions. Our method affords easy integration into topological machine learning algorithms. We demonstrate its efficacy for parameter estimation in different simulation settings.
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
ISSN (print) / ISBN 2835-8856
e-ISSN 2835-8856
Quellenangaben Band: 2024 Heft: , Seiten: , Artikelnummer: , Supplement: ,
Verlag Journal of Machine Learning Research Inc.
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed
Institut(e) Institute of AI for Health (AIH)