Garrucho, L.* ; Kushibar, K.* ; Reidel, C.A.* ; Joshi, S.* ; Osuala, R. ; Tsirikoglou, A.* ; Bobowicz, M.* ; Del Riego, J.* ; Catanese, A.* ; Gwoździewicz, K.* ; Cosaka, M.L.* ; Abo-Elhoda, P.M.* ; Tantawy, S.W.* ; Sakrana, S.S.* ; Shawky-Abdelfatah, N.O.* ; Salem, A.M.A.* ; Kozana, A.* ; Divjak, E.* ; Ivanac, G.* ; Nikiforaki, K.* ; Klontzas, M.E.* ; García-Dosdá, R.* ; Gulsun-Akpinar, M.* ; Lafcı, O.* ; Mann, R.M.* ; Martín-Isla, C.* ; Prior, F.* ; Marias, K.* ; Starmans, M.P.A.* ; Strand, F.* ; Diaz, O.* ; Igual, L.* ; Lekadir, K.*
A large-scale multicenter breast cancer DCE-MRI benchmark dataset with expert segmentations.
Sci. Data 12:453 (2025)
Artificial Intelligence (AI) research in breast cancer Magnetic Resonance Imaging (MRI) faces challenges due to limited expert-labeled segmentations. To address this, we present a multicenter dataset of 1506 pre-treatment T1-weighted dynamic contrast-enhanced MRI cases, including expert annotations of primary tumors and non-mass-enhanced regions. The dataset integrates imaging data from four collections in The Cancer Imaging Archive (TCIA), where only 163 cases with expert segmentations were initially available. To facilitate the annotation process, a deep learning model was trained to produce preliminary segmentations for the remaining cases. These were subsequently corrected and verified by 16 breast cancer experts (averaging 9 years of experience), creating a fully annotated dataset. Additionally, the dataset includes 49 harmonized clinical and demographic variables, as well as pre-trained weights for a baseline nnU-Net model trained on the annotated data. This resource addresses a critical gap in publicly available breast cancer datasets, enabling the development, validation, and benchmarking of advanced deep learning models, thus driving progress in breast cancer diagnostics, treatment response prediction, and personalized care.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Neoadjuvant Chemotherapy; Information; Prediction
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
2052-4463
e-ISSN
2052-4463
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 12,
Heft: 1,
Seiten: ,
Artikelnummer: 453
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
London
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
Förderungen
Juan de la Cierva fellowship
Ministry of Science and Innovation of Spain
European Union
Copyright
Erfassungsdatum
2025-05-09