PuSH - Publikationsserver des Helmholtz Zentrums München

Ayadi, S.* ; Hetzel, L. ; Sommer, J.* ; Theis, F.J. ; Günnemann, S.*

Unified guidance for geometry-conditioned molecular generation.

In: (38th Conference on Neural Information Processing Systems, NeurIPS 2024, 9-15 December 2024, Vancouver). 2024. accepted (Advances in Neural Information Processing Systems ; 37)
Postprint
Effectively designing molecular geometries is essential to advancing pharmaceutical innovations, a domain, which has experienced great attention through the success of generative models and, in particular, diffusion models. However, current molecular diffusion models are tailored towards a specific downstream task and lack adaptability. We introduce UniGuide, a framework for controlled geometric guidance of unconditional diffusion models that allows flexible conditioning during inference without the requirement of extra training or networks. We show how applications such as structure-based, fragment-based, and ligand-based drug design are formulated in the UniGuide framework and demonstrate on-par or superior performance compared to specialised models. Offering a more versatile approach, UniGuide has the potential to streamline the development of molecular generative models, allowing them to be readily used in diverse application scenarios.
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Konferenzbeitrag
Korrespondenzautor
ISSN (print) / ISBN 1049-5258
Konferenztitel 38th Conference on Neural Information Processing Systems, NeurIPS 2024
Konferzenzdatum 9-15 December 2024
Konferenzort Vancouver
Quellenangaben Band: 37 Heft: , Seiten: , Artikelnummer: , Supplement: ,
Nichtpatentliteratur Publikationen