Holzmann, C. ; Karg, J.* ; Reiger, M. ; Kharba, R. ; Romano, P. ; Scheiwein, S.* ; Khalfi, C. ; Muzalyova, A.* ; Brunner, J.O.* ; Hammel, G. ; Damialis, A.* ; Traidl-Hoffmann, C. ; Plaza, M.P. ; Gilles, S.
Clinical benefits of a randomized allergy app intervention in grass pollen sufferers: A controlled trial.
Allergy, DOI: 10.1111/all.16558 (2025)
BACKGROUND: Symptom monitoring can improve adherence to daily medication. However, controlled clinical trials on multi-modular allergy apps and their various functions have been difficult to implement. The objective of this study was to assess the clinical benefit of an allergy app with varying numbers of functions in reducing symptoms and improving quality of (QoL) life in grass pollen allergic individuals. The secondary objective was to develop a symptom forecast based on patient-derived and environmental data. METHODS: We performed a stratified, controlled intervention study (May-August 2023) with grass pollen allergic participants (N = 167) in Augsburg, Germany. Participants were divided into three groups, each receiving the same allergy app, but with increasing numbers of functions. PRIMARY ENDPOINT: rhinitis-related QoL; Secondary endpoints: symptom scores, relevant behavior, self-reported usefulness of the app, symptom forecast. RESULTS: Rhinitis-related QoL was increased after the intervention, with no statistical inter-group differences. However, participants with access to the full app version, including a pollen forecast, took more medication and reported lower symptoms and social activity impairment than participants with access to a reduced-function app. Using an XGBoost multiclass classification model, we achieved promising results for predicting nasal (accuracy: 0.79; F1-score: 0.78) and ocular (accuracy: 0.82; F1-score: 0.76) symptom levels and derived feature importance using SHAP as a guidance for future approaches. CONCLUSION: Our allergy app with its high-performance pollen forecast, symptom diary, and general allergy-related information provides a clinical benefit for allergy sufferers. Reliable symptom forecasts may be created given high-quality and high-resolution data.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Allergic Rhinitis ; Allergy App ; Clinical Study ; Pollen Forecast ; Symptom Forecast; Quality-of-life; Rhinoconjunctivitis; Validation; Symptoms; Rhinitis; Exposure; Season
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0105-4538
e-ISSN
1398-9995
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band:
Heft:
Seiten:
Artikelnummer:
Supplement:
Reihe
Verlag
Wiley
Verlagsort
111 River St, Hoboken 07030-5774, Nj Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Environmental Medicine (IEM)
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Allergy
PSP-Element(e)
G-503400-001
Förderungen
Medical Faculty of the University of Augsburg
Bayerisches Landesamt fr Gesunheit und Lebensmittelsicherheit (LGL)
Copyright
Erfassungsdatum
2025-05-10