PuSH - Publikationsserver des Helmholtz Zentrums München

Holzmann, C. ; Karg, J.* ; Reiger, M. ; Kharba, R. ; Romano, P. ; Scheiwein, S.* ; Khalfi, C. ; Muzalyova, A.* ; Brunner, J.O.* ; Hammel, G. ; Damialis, A.* ; Traidl-Hoffmann, C. ; Plaza, M.P. ; Gilles, S.

Clinical benefits of a randomized allergy app intervention in grass pollen sufferers: A controlled trial.

Allergy, DOI: 10.1111/all.16558 (2025)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
BACKGROUND: Symptom monitoring can improve adherence to daily medication. However, controlled clinical trials on multi-modular allergy apps and their various functions have been difficult to implement. The objective of this study was to assess the clinical benefit of an allergy app with varying numbers of functions in reducing symptoms and improving quality of (QoL) life in grass pollen allergic individuals. The secondary objective was to develop a symptom forecast based on patient-derived and environmental data. METHODS: We performed a stratified, controlled intervention study (May-August 2023) with grass pollen allergic participants (N = 167) in Augsburg, Germany. Participants were divided into three groups, each receiving the same allergy app, but with increasing numbers of functions. PRIMARY ENDPOINT: rhinitis-related QoL; Secondary endpoints: symptom scores, relevant behavior, self-reported usefulness of the app, symptom forecast. RESULTS: Rhinitis-related QoL was increased after the intervention, with no statistical inter-group differences. However, participants with access to the full app version, including a pollen forecast, took more medication and reported lower symptoms and social activity impairment than participants with access to a reduced-function app. Using an XGBoost multiclass classification model, we achieved promising results for predicting nasal (accuracy: 0.79; F1-score: 0.78) and ocular (accuracy: 0.82; F1-score: 0.76) symptom levels and derived feature importance using SHAP as a guidance for future approaches. CONCLUSION: Our allergy app with its high-performance pollen forecast, symptom diary, and general allergy-related information provides a clinical benefit for allergy sufferers. Reliable symptom forecasts may be created given high-quality and high-resolution data.
Impact Factor
Scopus SNIP
Altmetric
12.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Allergic Rhinitis ; Allergy App ; Clinical Study ; Pollen Forecast ; Symptom Forecast; Quality-of-life; Rhinoconjunctivitis; Validation; Symptoms; Rhinitis; Exposure; Season
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 0105-4538
e-ISSN 1398-9995
Zeitschrift Allergy
Verlag Wiley
Verlagsort 111 River St, Hoboken 07030-5774, Nj Usa
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Environmental Medicine (IEM)
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Allergy
PSP-Element(e) G-503400-001
Förderungen Medical Faculty of the University of Augsburg
Bayerisches Landesamt fr Gesunheit und Lebensmittelsicherheit (LGL)
Scopus ID 105005077392
PubMed ID 40242867
Erfassungsdatum 2025-05-10