PuSH - Publikationsserver des Helmholtz Zentrums München

Cui, H.* ; Tejada Lapuerta, A. ; Brbic, M.* ; Saez-Rodriguez, J.* ; Cristea, S.* ; Goodarzi, H.* ; Lotfollahi, M.* ; Theis, F.J. ; Wang, B.*

Towards multimodal foundation models in molecular cell biology.

Nature 640, 623-633 (2025)
Postprint DOI PMC
Open Access Green
The rapid advent of high-throughput omics technologies has created an exponential growth in biological data, often outpacing our ability to derive molecular insights. Large-language models have shown a way out of this data deluge in natural language processing by integrating massive datasets into a joint model with manifold downstream use cases. Here we envision developing multimodal foundation models, pretrained on diverse omics datasets, including genomics, transcriptomics, epigenomics, proteomics, metabolomics and spatial profiling. These models are expected to exhibit unprecedented potential for characterizing the molecular states of cells across a broad continuum, thereby facilitating the creation of holistic maps of cells, genes and tissues. Context-specific transfer learning of the foundation models can empower diverse applications from novel cell-type recognition, biomarker discovery and gene regulation inference, to in silico perturbations. This new paradigm could launch an era of artificial intelligence-empowered analyses, one that promises to unravel the intricate complexities of molecular cell biology, to support experimental design and, more broadly, to profoundly extend our understanding of life sciences.
Impact Factor
Scopus SNIP
Altmetric
48.500
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Schlagwörter Atlas; Rna; Chromatin; Principles; Database
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 0028-0836
e-ISSN 1476-4687
Zeitschrift Nature
Quellenangaben Band: 640, Heft: 8059, Seiten: 623-633 Artikelnummer: , Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Scopus ID 105003389985
PubMed ID 40240854
Erfassungsdatum 2025-05-10