Open Access Gold möglich sobald Verlagsversion bei der ZB eingereicht worden ist.
A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins.
Mol. Cell. Proteomics 7, 282-289 (2008)
Green fluorescent proteins (GFPs) and variants thereof are widely used to study protein localization and dynamics. We engineered a specific binder for fluorescent proteins based on a 13-kDa GFP binding fragment derived from a llama single chain antibody. This GFP-binding protein (GBP) can easily be produced in bacteria and coupled to a monovalent matrix. The GBP allows a fast and efficient (one-step) isolation of GFP fusion proteins and their interacting factors for biochemical analyses including mass spectroscopy and enzyme activity measurements. Moreover GBP is also suitable for chromatin immunoprecipitations from cells expressing fluorescent DNA-binding proteins. Most importantly, GBP can be fused with cellular proteins to ectopically recruit GFP fusion proteins allowing targeted manipulation of cellular structures and processes in living cells. Because of the high affinity capture of GFP fusion proteins in vitro and in vivo and a size in the lower nanometer range we refer to the immobilized GFP-binding protein as GFP-nanotrap. This versatile GFP-nanotrap enables a unique combination of microscopic, biochemical, and functional analyses with one and the same protein.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
ISSN (print) / ISBN
1535-9476
e-ISSN
1535-9484
Zeitschrift
Molecular and Cellular Proteomics
Quellenangaben
Band: 7,
Heft: 2,
Seiten: 282-289
Verlag
American Society for Biochemistry and Molecular Biology
Begutachtungsstatus
Peer reviewed
Institut(e)
Research Unit Gene Vector (AGV)