PuSH - Publikationsserver des Helmholtz Zentrums München

Withers, C.A.* ; Rufai, A.M.* ; Venkatesan, A.* ; Tirunagari, S.* ; Lobentanzer, S. ; Harrison, M.* ; Zdrazil, B.*

Natural language processing in drug discovery: Bridging the gap between text and therapeutics with artificial intelligence.

Expert Opin. Drug Discov. 20, 765-783 (2025)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
INTRODUCTION: The field of Natural Language Processing (NLP) within the life sciences has exploded in its capacity to aid the extraction and analysis of data from scientific texts in recent years through the advancement of Artificial Intelligence (AI). Drug discovery pipelines have been innovated and accelerated by the uptake of AI/Machine Learning (ML) techniques. AREAS COVERED: The authors provide background on Named Entity Recognition (NER) in text - from tagging terms in text using ontologies to entity identification via ML models. They also explore the use of Knowledge Graphs (KGs) in biological data ingestion, manipulation and extraction, leading into the modern age of Large Language Models (LLMs) and their ability to maneuver complex and abundant data. The authors also cover the main strengths and weaknesses of the many methods available when undertaking NLP tasks in drug discovery. Literature was derived from searches utilizing Europe PMC, ResearchRabbit and SciSpace. EXPERT OPINION: The mass of scientific data that is now produced each year is both a huge positive for potential innovation in drug discovery and a new hurdle for researchers to overcome. Notably, methods should be selected to fit a use case and the data available, as each method performs optimally under different conditions.
Impact Factor
Scopus SNIP
Altmetric
4.900
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Schlagwörter Drug discovery; Natural language processing; named entity recognition; large language model; knowledge graph; machine learning; deep learning; ontology; Tool
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 1746-0441
e-ISSN 1746-045X
Quellenangaben Band: 20, Heft: 6, Seiten: 765-783 Artikelnummer: , Supplement: ,
Verlag Informa Healthcare
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Förderungen European Bioinformatics Institute of the European Molecular Biology Laboratory (EMBL-EBI)
Scopus ID 105004288989
PubMed ID 40298230
Erfassungsdatum 2025-05-11