PuSH - Publikationsserver des Helmholtz Zentrums München

Gaviria, D.D.* ; Kupczyk, P.* ; Lee, B.* ; Gibbs, P.* ; Ko, H.J.* ; Semaan, A.* ; Albarqouni, S.

Deep learning for lymph node metastasis detection in pancreatic ductal adenocarcinoma.

In: (Proceedings of 2024 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2024)). Springer, 2025. 66-76 (LNEE ; 1372 LNEE)
DOI
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most lethal cancers, with an increasing incidence. Lymph node metastasis (LNM) is a critical factor that influences both patient prognosis and treatment approaches. Current methods for LNM detection using contrast-enhanced CT scans often suffer from low sensitivity and inaccuracies, highlighting the need for improved predictive models. This paper presents a Deep Learning (DL) approach that integrates imaging features with non-imaging clinical attributes to enhance the accuracy of LNM detection in PDAC. Our method involves a retrospective study of 366 PDAC in multi-institute datasets, leveraging clinical data alongside CT scans to train a model capable of detecting LNM without relying on the segmentation of lymph nodes (LNs). Our results demonstrate a significant improvement in balanced accuracy, increasing from 0.447 to 0.6532 with the incorporation of clinical attributes, underscoring the importance of holistic data integration in enhancing LNM detection. This work emphasizes the potential of collaborative, multi-center efforts in advancing predictive modeling for improved patient outcomes in PDAC. Our code is available online: https://github.com/albarqounilab/DELTA.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Konferenzbeitrag
Korrespondenzautor
Schlagwörter Deep Learning ; Lymph Node ; Pancreatic Cancer
ISSN (print) / ISBN 1876-1100
Konferenztitel Proceedings of 2024 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2024)
Quellenangaben Band: 1372 LNEE, Heft: , Seiten: 66-76 Artikelnummer: , Supplement: ,
Verlag Springer
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed